Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elpwgALT Structured version   Visualization version   GIF version

Theorem bj-elpwgALT 37037
Description: Alternate proof of elpwg 4568. See comment for bj-velpwALT 37036. (Contributed by BJ, 17-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-elpwgALT (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem bj-elpwgALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2817 . 2 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵𝐴 ∈ 𝒫 𝐵))
2 sseq1 3974 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 bj-velpwALT 37036 . 2 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
41, 2, 3vtoclbg 3526 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wss 3916  𝒫 cpw 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ss 3933  df-pw 4567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator