Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-velpwALT Structured version   Visualization version   GIF version

Theorem bj-velpwALT 36424
Description: This theorem bj-velpwALT 36424 and the next theorem bj-elpwgALT 36425 are alternate proofs of velpw 4599 and elpwg 4597 respectively, where one proves first the setvar case and then generalizes using vtoclbg 3537 instead of proving first the general case using elab2g 3662 and then specifying. Here, this results in needing an extra DV condition, a longer combined proof and use of ax-12 2163. In other cases, that order is better (e.g., vsnex 5419 proved before snexg 5420). (Contributed by BJ, 17-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-velpwALT (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-velpwALT
StepHypRef Expression
1 df-pw 4596 . . 3 𝒫 𝐴 = {𝑥𝑥𝐴}
21eleq2i 2817 . 2 (𝑥 ∈ 𝒫 𝐴𝑥 ∈ {𝑥𝑥𝐴})
3 abid 2705 . 2 (𝑥 ∈ {𝑥𝑥𝐴} ↔ 𝑥𝐴)
42, 3bitri 275 1 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  {cab 2701  wss 3940  𝒫 cpw 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-pw 4596
This theorem is referenced by:  bj-elpwgALT  36425
  Copyright terms: Public domain W3C validator