Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-velpwALT Structured version   Visualization version   GIF version

Theorem bj-velpwALT 37066
Description: This theorem bj-velpwALT 37066 and the next theorem bj-elpwgALT 37067 are alternate proofs of velpw 4553 and elpwg 4551 respectively, where one proves first the setvar case and then generalizes using vtoclbg 3510 instead of proving first the general case using elab2g 3634 and then specifying. Here, this results in needing an extra DV condition, a longer combined proof and use of ax-12 2179. In other cases, that order is better (e.g., vsnex 5370 proved before snexg 5371). (Contributed by BJ, 17-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-velpwALT (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-velpwALT
StepHypRef Expression
1 df-pw 4550 . . 3 𝒫 𝐴 = {𝑥𝑥𝐴}
21eleq2i 2821 . 2 (𝑥 ∈ 𝒫 𝐴𝑥 ∈ {𝑥𝑥𝐴})
3 abid 2712 . 2 (𝑥 ∈ {𝑥𝑥𝐴} ↔ 𝑥𝐴)
42, 3bitri 275 1 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2110  {cab 2708  wss 3900  𝒫 cpw 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-12 2179  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-pw 4550
This theorem is referenced by:  bj-elpwgALT  37067
  Copyright terms: Public domain W3C validator