Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-velpwALT Structured version   Visualization version   GIF version

Theorem bj-velpwALT 37041
Description: This theorem bj-velpwALT 37041 and the next theorem bj-elpwgALT 37042 are alternate proofs of velpw 4568 and elpwg 4566 respectively, where one proves first the setvar case and then generalizes using vtoclbg 3523 instead of proving first the general case using elab2g 3647 and then specifying. Here, this results in needing an extra DV condition, a longer combined proof and use of ax-12 2178. In other cases, that order is better (e.g., vsnex 5389 proved before snexg 5390). (Contributed by BJ, 17-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-velpwALT (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-velpwALT
StepHypRef Expression
1 df-pw 4565 . . 3 𝒫 𝐴 = {𝑥𝑥𝐴}
21eleq2i 2820 . 2 (𝑥 ∈ 𝒫 𝐴𝑥 ∈ {𝑥𝑥𝐴})
3 abid 2711 . 2 (𝑥 ∈ {𝑥𝑥𝐴} ↔ 𝑥𝐴)
42, 3bitri 275 1 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  {cab 2707  wss 3914  𝒫 cpw 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-pw 4565
This theorem is referenced by:  bj-elpwgALT  37042
  Copyright terms: Public domain W3C validator