Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-velpwALT Structured version   Visualization version   GIF version

Theorem bj-velpwALT 37036
Description: This theorem bj-velpwALT 37036 and the next theorem bj-elpwgALT 37037 are alternate proofs of velpw 4570 and elpwg 4568 respectively, where one proves first the setvar case and then generalizes using vtoclbg 3526 instead of proving first the general case using elab2g 3649 and then specifying. Here, this results in needing an extra DV condition, a longer combined proof and use of ax-12 2178. In other cases, that order is better (e.g., vsnex 5391 proved before snexg 5392). (Contributed by BJ, 17-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-velpwALT (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-velpwALT
StepHypRef Expression
1 df-pw 4567 . . 3 𝒫 𝐴 = {𝑥𝑥𝐴}
21eleq2i 2821 . 2 (𝑥 ∈ 𝒫 𝐴𝑥 ∈ {𝑥𝑥𝐴})
3 abid 2712 . 2 (𝑥 ∈ {𝑥𝑥𝐴} ↔ 𝑥𝐴)
42, 3bitri 275 1 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  {cab 2708  wss 3916  𝒫 cpw 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-pw 4567
This theorem is referenced by:  bj-elpwgALT  37037
  Copyright terms: Public domain W3C validator