Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsnb Structured version   Visualization version   GIF version

Theorem bj-elsnb 36398
Description: Biconditional version of elsng 4634. (Contributed by BJ, 18-Nov-2023.)
Assertion
Ref Expression
bj-elsnb (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-elsnb
StepHypRef Expression
1 elex 3485 . 2 (𝐴 ∈ {𝐵} → 𝐴 ∈ V)
2 elsng 4634 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
31, 2biadanii 819 1 (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  {csn 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-sn 4621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator