Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsnb Structured version   Visualization version   GIF version

Theorem bj-elsnb 35211
Description: Biconditional version of elsng 4580. (Contributed by BJ, 18-Nov-2023.)
Assertion
Ref Expression
bj-elsnb (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-elsnb
StepHypRef Expression
1 elex 3448 . 2 (𝐴 ∈ {𝐵} → 𝐴 ∈ V)
2 elsng 4580 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
31, 2biadanii 818 1 (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  {csn 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-sn 4567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator