Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsnb Structured version   Visualization version   GIF version

Theorem bj-elsnb 37027
Description: Biconditional version of elsng 4662. (Contributed by BJ, 18-Nov-2023.)
Assertion
Ref Expression
bj-elsnb (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-elsnb
StepHypRef Expression
1 elex 3509 . 2 (𝐴 ∈ {𝐵} → 𝐴 ∈ V)
2 elsng 4662 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
31, 2biadanii 821 1 (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sn 4649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator