Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsnb Structured version   Visualization version   GIF version

Theorem bj-elsnb 34450
 Description: Biconditional version of elsng 4564. (Contributed by BJ, 18-Nov-2023.)
Assertion
Ref Expression
bj-elsnb (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-elsnb
StepHypRef Expression
1 elex 3498 . 2 (𝐴 ∈ {𝐵} → 𝐴 ∈ V)
2 elsng 4564 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
31, 2biadanii 821 1 (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Vcvv 3480  {csn 4550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-sn 4551 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator