| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2734 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | df-sn 4593 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
| 3 | 1, 2 | elab2g 3650 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sn 4593 |
| This theorem is referenced by: elsn 4607 elsni 4609 snidg 4627 elunsn 4650 eltpg 4653 el7g 4657 eldifsn 4753 sneqrg 4806 elsucg 6405 ltxr 13082 elfzp12 13571 fzdif1 13573 fprodn0f 15964 lcmfunsnlem2 16617 ramcl 17007 initoeu2lem1 17983 pmtrdifellem4 19416 psdmul 22060 logbmpt 26705 2lgslem2 27313 xrge0tsmsbi 33010 rprmnz 33498 dimkerim 33630 elzrhunit 33974 esumrnmpt2 34065 plymulx 34546 bj-projval 36991 bj-elsn12g 37055 bj-elsnb 37056 bj-snmoore 37108 bj-elsn0 37150 eldmressnALTV 38268 brressn 38439 zndvdchrrhm 41967 aks4d1p6 42076 aks6d1c2lem4 42122 sticksstones11 42151 aks6d1c6lem2 42166 aks6d1c7lem1 42175 rhmqusspan 42180 unitscyglem2 42191 reclimc 45658 itgsincmulx 45979 dirkercncflem2 46109 dirkercncflem4 46111 fourierdlem53 46164 fourierdlem58 46169 fourierdlem60 46171 fourierdlem61 46172 fourierdlem62 46173 fourierdlem76 46187 fourierdlem101 46212 elaa2 46239 etransc 46288 qndenserrnbl 46300 sge0tsms 46385 el1fzopredsuc 47330 elclnbgrelnbgr 47830 clnbupgrel 47839 mndtcob 49575 |
| Copyright terms: Public domain | W3C validator |