| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | df-sn 4586 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
| 3 | 1, 2 | elab2g 3644 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sn 4586 |
| This theorem is referenced by: elsn 4600 elsni 4602 snidg 4620 elunsn 4643 eltpg 4646 el7g 4650 eldifsn 4746 sneqrg 4799 elsucg 6390 ltxr 13051 elfzp12 13540 fzdif1 13542 fprodn0f 15933 lcmfunsnlem2 16586 ramcl 16976 initoeu2lem1 17952 pmtrdifellem4 19385 psdmul 22029 logbmpt 26674 2lgslem2 27282 xrge0tsmsbi 32976 rprmnz 33464 dimkerim 33596 elzrhunit 33940 esumrnmpt2 34031 plymulx 34512 bj-projval 36957 bj-elsn12g 37021 bj-elsnb 37022 bj-snmoore 37074 bj-elsn0 37116 eldmressnALTV 38234 brressn 38405 zndvdchrrhm 41933 aks4d1p6 42042 aks6d1c2lem4 42088 sticksstones11 42117 aks6d1c6lem2 42132 aks6d1c7lem1 42141 rhmqusspan 42146 unitscyglem2 42157 reclimc 45624 itgsincmulx 45945 dirkercncflem2 46075 dirkercncflem4 46077 fourierdlem53 46130 fourierdlem58 46135 fourierdlem60 46137 fourierdlem61 46138 fourierdlem62 46139 fourierdlem76 46153 fourierdlem101 46178 elaa2 46205 etransc 46254 qndenserrnbl 46266 sge0tsms 46351 el1fzopredsuc 47299 elclnbgrelnbgr 47799 clnbupgrel 47808 mndtcob 49544 |
| Copyright terms: Public domain | W3C validator |