| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | df-sn 4586 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
| 3 | 1, 2 | elab2g 3644 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sn 4586 |
| This theorem is referenced by: elsn 4600 elsni 4602 snidg 4620 elunsn 4643 eltpg 4646 el7g 4650 eldifsn 4746 sneqrg 4799 elsucg 6390 ltxr 13051 elfzp12 13540 fzdif1 13542 fprodn0f 15933 lcmfunsnlem2 16586 ramcl 16976 initoeu2lem1 17956 pmtrdifellem4 19393 psdmul 22086 logbmpt 26731 2lgslem2 27339 xrge0tsmsbi 33046 rprmnz 33484 dimkerim 33616 elzrhunit 33960 esumrnmpt2 34051 plymulx 34532 bj-projval 36977 bj-elsn12g 37041 bj-elsnb 37042 bj-snmoore 37094 bj-elsn0 37136 eldmressnALTV 38254 brressn 38425 zndvdchrrhm 41953 aks4d1p6 42062 aks6d1c2lem4 42108 sticksstones11 42137 aks6d1c6lem2 42152 aks6d1c7lem1 42161 rhmqusspan 42166 unitscyglem2 42177 reclimc 45644 itgsincmulx 45965 dirkercncflem2 46095 dirkercncflem4 46097 fourierdlem53 46150 fourierdlem58 46155 fourierdlem60 46157 fourierdlem61 46158 fourierdlem62 46159 fourierdlem76 46173 fourierdlem101 46198 elaa2 46225 etransc 46274 qndenserrnbl 46286 sge0tsms 46371 el1fzopredsuc 47319 elclnbgrelnbgr 47819 clnbupgrel 47828 mndtcob 49564 |
| Copyright terms: Public domain | W3C validator |