![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2739 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | df-sn 4632 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
3 | 1, 2 | elab2g 3683 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sn 4632 |
This theorem is referenced by: elsn 4646 elsni 4648 snidg 4665 elunsn 4688 eltpg 4691 el7g 4695 eldifsn 4791 sneqrg 4844 elsucg 6454 ltxr 13155 elfzp12 13640 fzdif1 13642 fprodn0f 16024 lcmfunsnlem2 16674 ramcl 17063 initoeu2lem1 18068 pmtrdifellem4 19512 psdmul 22188 logbmpt 26846 2lgslem2 27454 xrge0tsmsbi 33049 rprmnz 33528 dimkerim 33655 elzrhunit 33940 esumrnmpt2 34049 plymulx 34542 bj-projval 36979 bj-elsn12g 37043 bj-elsnb 37044 bj-snmoore 37096 bj-elsn0 37138 eldmressnALTV 38254 brressn 38423 zndvdchrrhm 41953 aks4d1p6 42063 aks6d1c2lem4 42109 sticksstones11 42138 aks6d1c6lem2 42153 aks6d1c7lem1 42162 rhmqusspan 42167 unitscyglem2 42178 metakunt20 42206 reclimc 45609 itgsincmulx 45930 dirkercncflem2 46060 dirkercncflem4 46062 fourierdlem53 46115 fourierdlem58 46120 fourierdlem60 46122 fourierdlem61 46123 fourierdlem62 46124 fourierdlem76 46138 fourierdlem101 46163 elaa2 46190 etransc 46239 qndenserrnbl 46251 sge0tsms 46336 el1fzopredsuc 47275 elclnbgrelnbgr 47750 clnbupgrel 47759 mndtcob 48891 |
Copyright terms: Public domain | W3C validator |