Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2740 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | df-sn 4573 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
3 | 1, 2 | elab2g 3621 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 {csn 4572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-sn 4573 |
This theorem is referenced by: elsn 4587 elsni 4589 snidg 4606 eltpg 4632 eldifsn 4733 sneqrg 4783 elsucg 6363 ltxr 12944 elfzp12 13428 fprodn0f 15792 lcmfunsnlem2 16434 ramcl 16819 initoeu2lem1 17818 pmtrdifellem4 19175 logbmpt 26036 2lgslem2 26641 elunsn 31087 xrge0tsmsbi 31546 dimkerim 31947 elzrhunit 32168 esumrnmpt2 32275 plymulx 32768 bj-projval 35275 bj-elsn12g 35329 bj-elsnb 35330 bj-snmoore 35382 bj-elsn0 35424 eldmressnALTV 36530 brressn 36701 aks4d1p6 40336 sticksstones11 40362 metakunt20 40394 reclimc 43519 itgsincmulx 43840 dirkercncflem2 43970 dirkercncflem4 43972 fourierdlem53 44025 fourierdlem58 44030 fourierdlem60 44032 fourierdlem61 44033 fourierdlem62 44034 fourierdlem76 44048 fourierdlem101 44073 elaa2 44100 etransc 44149 qndenserrnbl 44161 sge0tsms 44244 el1fzopredsuc 45157 mndtcob 46709 |
Copyright terms: Public domain | W3C validator |