| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | df-sn 4590 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
| 3 | 1, 2 | elab2g 3647 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sn 4590 |
| This theorem is referenced by: elsn 4604 elsni 4606 snidg 4624 elunsn 4647 eltpg 4650 el7g 4654 eldifsn 4750 sneqrg 4803 elsucg 6402 ltxr 13075 elfzp12 13564 fzdif1 13566 fprodn0f 15957 lcmfunsnlem2 16610 ramcl 17000 initoeu2lem1 17976 pmtrdifellem4 19409 psdmul 22053 logbmpt 26698 2lgslem2 27306 xrge0tsmsbi 33003 rprmnz 33491 dimkerim 33623 elzrhunit 33967 esumrnmpt2 34058 plymulx 34539 bj-projval 36984 bj-elsn12g 37048 bj-elsnb 37049 bj-snmoore 37101 bj-elsn0 37143 eldmressnALTV 38261 brressn 38432 zndvdchrrhm 41960 aks4d1p6 42069 aks6d1c2lem4 42115 sticksstones11 42144 aks6d1c6lem2 42159 aks6d1c7lem1 42168 rhmqusspan 42173 unitscyglem2 42184 reclimc 45651 itgsincmulx 45972 dirkercncflem2 46102 dirkercncflem4 46104 fourierdlem53 46157 fourierdlem58 46162 fourierdlem60 46164 fourierdlem61 46165 fourierdlem62 46166 fourierdlem76 46180 fourierdlem101 46205 elaa2 46232 etransc 46281 qndenserrnbl 46293 sge0tsms 46378 el1fzopredsuc 47326 elclnbgrelnbgr 47826 clnbupgrel 47835 mndtcob 49571 |
| Copyright terms: Public domain | W3C validator |