![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | df-sn 4649 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
3 | 1, 2 | elab2g 3696 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sn 4649 |
This theorem is referenced by: elsn 4663 elsni 4665 snidg 4682 eltpg 4709 el7g 4713 eldifsn 4811 sneqrg 4864 elsucg 6463 ltxr 13178 elfzp12 13663 fprodn0f 16039 lcmfunsnlem2 16687 ramcl 17076 initoeu2lem1 18081 pmtrdifellem4 19521 psdmul 22193 logbmpt 26849 2lgslem2 27457 elunsn 32541 xrge0tsmsbi 33042 rprmnz 33513 dimkerim 33640 elzrhunit 33925 esumrnmpt2 34032 plymulx 34525 bj-projval 36962 bj-elsn12g 37026 bj-elsnb 37027 bj-snmoore 37079 bj-elsn0 37121 eldmressnALTV 38228 brressn 38397 zndvdchrrhm 41927 aks4d1p6 42038 aks6d1c2lem4 42084 sticksstones11 42113 aks6d1c6lem2 42128 aks6d1c7lem1 42137 rhmqusspan 42142 unitscyglem2 42153 metakunt20 42181 reclimc 45574 itgsincmulx 45895 dirkercncflem2 46025 dirkercncflem4 46027 fourierdlem53 46080 fourierdlem58 46085 fourierdlem60 46087 fourierdlem61 46088 fourierdlem62 46089 fourierdlem76 46103 fourierdlem101 46128 elaa2 46155 etransc 46204 qndenserrnbl 46216 sge0tsms 46301 el1fzopredsuc 47240 clnbupgrel 47707 mndtcob 48755 |
Copyright terms: Public domain | W3C validator |