Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | df-sn 4559 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
3 | 1, 2 | elab2g 3604 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sn 4559 |
This theorem is referenced by: elsn 4573 elsni 4575 snidg 4592 eltpg 4618 eldifsn 4717 sneqrg 4767 elsucg 6318 ltxr 12780 elfzp12 13264 fprodn0f 15629 lcmfunsnlem2 16273 ramcl 16658 initoeu2lem1 17645 pmtrdifellem4 19002 logbmpt 25843 2lgslem2 26448 elunsn 30759 xrge0tsmsbi 31220 dimkerim 31610 elzrhunit 31829 esumrnmpt2 31936 plymulx 32427 bj-projval 35113 bj-elsn12g 35158 bj-elsnb 35159 bj-snmoore 35211 bj-elsn0 35253 aks4d1p6 40017 sticksstones11 40040 metakunt20 40072 reclimc 43084 itgsincmulx 43405 dirkercncflem2 43535 dirkercncflem4 43537 fourierdlem53 43590 fourierdlem58 43595 fourierdlem60 43597 fourierdlem61 43598 fourierdlem62 43599 fourierdlem76 43613 fourierdlem101 43638 elaa2 43665 etransc 43714 qndenserrnbl 43726 sge0tsms 43808 el1fzopredsuc 44705 mndtcob 46255 |
Copyright terms: Public domain | W3C validator |