| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2735 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | df-sn 4574 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
| 3 | 1, 2 | elab2g 3631 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sn 4574 |
| This theorem is referenced by: elsn 4588 elsni 4590 snidg 4610 elunsn 4633 eltpg 4636 el7g 4640 eldifsn 4735 sneqrg 4788 elsucg 6376 ltxr 13014 elfzp12 13503 fzdif1 13505 fprodn0f 15898 lcmfunsnlem2 16551 ramcl 16941 initoeu2lem1 17921 pmtrdifellem4 19391 psdmul 22081 logbmpt 26725 2lgslem2 27333 xrge0tsmsbi 33043 rprmnz 33485 dimkerim 33640 elzrhunit 33990 esumrnmpt2 34081 plymulx 34561 bj-projval 37038 bj-elsn12g 37102 bj-elsnb 37103 bj-snmoore 37155 bj-elsn0 37197 eldmressnALTV 38315 brressn 38486 zndvdchrrhm 42013 aks4d1p6 42122 aks6d1c2lem4 42168 sticksstones11 42197 aks6d1c6lem2 42212 aks6d1c7lem1 42221 rhmqusspan 42226 unitscyglem2 42237 reclimc 45699 itgsincmulx 46020 dirkercncflem2 46150 dirkercncflem4 46152 fourierdlem53 46205 fourierdlem58 46210 fourierdlem60 46212 fourierdlem61 46213 fourierdlem62 46214 fourierdlem76 46228 fourierdlem101 46253 elaa2 46280 etransc 46329 qndenserrnbl 46341 sge0tsms 46426 el1fzopredsuc 47364 elclnbgrelnbgr 47864 clnbupgrel 47873 mndtcob 49622 |
| Copyright terms: Public domain | W3C validator |