| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2739 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | df-sn 4602 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
| 3 | 1, 2 | elab2g 3659 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-sn 4602 |
| This theorem is referenced by: elsn 4616 elsni 4618 snidg 4636 elunsn 4659 eltpg 4662 el7g 4666 eldifsn 4762 sneqrg 4815 elsucg 6422 ltxr 13131 elfzp12 13620 fzdif1 13622 fprodn0f 16007 lcmfunsnlem2 16659 ramcl 17049 initoeu2lem1 18027 pmtrdifellem4 19460 psdmul 22104 logbmpt 26750 2lgslem2 27358 xrge0tsmsbi 33057 rprmnz 33535 dimkerim 33667 elzrhunit 34008 esumrnmpt2 34099 plymulx 34580 bj-projval 37014 bj-elsn12g 37078 bj-elsnb 37079 bj-snmoore 37131 bj-elsn0 37173 eldmressnALTV 38290 brressn 38459 zndvdchrrhm 41985 aks4d1p6 42094 aks6d1c2lem4 42140 sticksstones11 42169 aks6d1c6lem2 42184 aks6d1c7lem1 42193 rhmqusspan 42198 unitscyglem2 42209 metakunt20 42237 reclimc 45682 itgsincmulx 46003 dirkercncflem2 46133 dirkercncflem4 46135 fourierdlem53 46188 fourierdlem58 46193 fourierdlem60 46195 fourierdlem61 46196 fourierdlem62 46197 fourierdlem76 46211 fourierdlem101 46236 elaa2 46263 etransc 46312 qndenserrnbl 46324 sge0tsms 46409 el1fzopredsuc 47354 elclnbgrelnbgr 47839 clnbupgrel 47848 mndtcob 49459 |
| Copyright terms: Public domain | W3C validator |