![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2736 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | df-sn 4629 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
3 | 1, 2 | elab2g 3670 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-sn 4629 |
This theorem is referenced by: elsn 4643 elsni 4645 snidg 4662 eltpg 4689 eldifsn 4790 sneqrg 4840 elsucg 6432 ltxr 13099 elfzp12 13584 fprodn0f 15939 lcmfunsnlem2 16581 ramcl 16966 initoeu2lem1 17968 pmtrdifellem4 19388 logbmpt 26517 2lgslem2 27122 elunsn 32005 xrge0tsmsbi 32468 dimkerim 32988 elzrhunit 33245 esumrnmpt2 33352 plymulx 33845 bj-projval 36180 bj-elsn12g 36244 bj-elsnb 36245 bj-snmoore 36297 bj-elsn0 36339 eldmressnALTV 37443 brressn 37614 aks4d1p6 41252 sticksstones11 41278 metakunt20 41310 reclimc 44668 itgsincmulx 44989 dirkercncflem2 45119 dirkercncflem4 45121 fourierdlem53 45174 fourierdlem58 45179 fourierdlem60 45181 fourierdlem61 45182 fourierdlem62 45183 fourierdlem76 45197 fourierdlem101 45222 elaa2 45249 etransc 45298 qndenserrnbl 45310 sge0tsms 45395 el1fzopredsuc 46332 mndtcob 47796 |
Copyright terms: Public domain | W3C validator |