Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsng | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
elsng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | df-sn 4562 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
3 | 1, 2 | elab2g 3611 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sn 4562 |
This theorem is referenced by: elsn 4576 elsni 4578 snidg 4595 eltpg 4621 eldifsn 4720 sneqrg 4770 elsucg 6333 ltxr 12851 elfzp12 13335 fprodn0f 15701 lcmfunsnlem2 16345 ramcl 16730 initoeu2lem1 17729 pmtrdifellem4 19087 logbmpt 25938 2lgslem2 26543 elunsn 30858 xrge0tsmsbi 31318 dimkerim 31708 elzrhunit 31929 esumrnmpt2 32036 plymulx 32527 bj-projval 35186 bj-elsn12g 35231 bj-elsnb 35232 bj-snmoore 35284 bj-elsn0 35326 aks4d1p6 40089 sticksstones11 40112 metakunt20 40144 reclimc 43194 itgsincmulx 43515 dirkercncflem2 43645 dirkercncflem4 43647 fourierdlem53 43700 fourierdlem58 43705 fourierdlem60 43707 fourierdlem61 43708 fourierdlem62 43709 fourierdlem76 43723 fourierdlem101 43748 elaa2 43775 etransc 43824 qndenserrnbl 43836 sge0tsms 43918 el1fzopredsuc 44817 mndtcob 46369 |
Copyright terms: Public domain | W3C validator |