Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsn12g Structured version   Visualization version   GIF version

Theorem bj-elsn12g 37083
Description: Join of elsng 4620 and elsn2g 4645. (Contributed by BJ, 18-Nov-2023.)
Assertion
Ref Expression
bj-elsn12g ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem bj-elsn12g
StepHypRef Expression
1 elsng 4620 . 2 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
2 elsn2g 4645 . 2 (𝐵𝑊 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
31, 2jaoi 857 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-sn 4607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator