Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsn12g Structured version   Visualization version   GIF version

Theorem bj-elsn12g 35231
Description: Join of elsng 4575 and elsn2g 4599. (Contributed by BJ, 18-Nov-2023.)
Assertion
Ref Expression
bj-elsn12g ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem bj-elsn12g
StepHypRef Expression
1 elsng 4575 . 2 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
2 elsn2g 4599 . 2 (𝐵𝑊 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
31, 2jaoi 854 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844   = wceq 1539  wcel 2106  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sn 4562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator