Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-flddrng | Structured version Visualization version GIF version |
Description: Fields are division rings (elemental version). (Contributed by BJ, 9-Nov-2024.) |
Ref | Expression |
---|---|
bj-flddrng | ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fldssdrng 35459 | . 2 ⊢ Field ⊆ DivRing | |
2 | 1 | sseli 3917 | 1 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 DivRingcdr 19991 Fieldcfield 19992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-field 19994 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |