Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-flddrng Structured version   Visualization version   GIF version

Theorem bj-flddrng 35387
Description: Fields are division rings (elemental version). (Contributed by BJ, 9-Nov-2024.)
Assertion
Ref Expression
bj-flddrng (𝐹 ∈ Field → 𝐹 ∈ DivRing)

Proof of Theorem bj-flddrng
StepHypRef Expression
1 bj-fldssdrng 35386 . 2 Field ⊆ DivRing
21sseli 3913 1 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  DivRingcdr 19906  Fieldcfield 19907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-field 19909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator