Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-flddrng Structured version   Visualization version   GIF version

Theorem bj-flddrng 37284
Description: Fields are division rings (elemental version). (Contributed by BJ, 9-Nov-2024.)
Assertion
Ref Expression
bj-flddrng (𝐹 ∈ Field → 𝐹 ∈ DivRing)

Proof of Theorem bj-flddrng
StepHypRef Expression
1 bj-fldssdrng 37283 . 2 Field ⊆ DivRing
21sseli 3945 1 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  DivRingcdr 20645  Fieldcfield 20646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3924  df-ss 3934  df-field 20648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator