![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isvec | Structured version Visualization version GIF version |
Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-isvec.scal | β’ (π β πΎ = (Scalarβπ)) |
Ref | Expression |
---|---|
bj-isvec | β’ (π β (π β LVec β (π β LMod β§ πΎ β DivRing))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
2 | 1 | islvec 20860 | . 2 β’ (π β LVec β (π β LMod β§ (Scalarβπ) β DivRing)) |
3 | bj-isvec.scal | . . . . 5 β’ (π β πΎ = (Scalarβπ)) | |
4 | 3 | eqcomd 2737 | . . . 4 β’ (π β (Scalarβπ) = πΎ) |
5 | 4 | eleq1d 2817 | . . 3 β’ (π β ((Scalarβπ) β DivRing β πΎ β DivRing)) |
6 | 5 | anbi2d 628 | . 2 β’ (π β ((π β LMod β§ (Scalarβπ) β DivRing) β (π β LMod β§ πΎ β DivRing))) |
7 | 2, 6 | bitrid 283 | 1 β’ (π β (π β LVec β (π β LMod β§ πΎ β DivRing))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βcfv 6543 Scalarcsca 17205 DivRingcdr 20501 LModclmod 20615 LVecclvec 20858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-lvec 20859 |
This theorem is referenced by: bj-rvecvec 36484 |
Copyright terms: Public domain | W3C validator |