| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-isvec.scal | ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) |
| Ref | Expression |
|---|---|
| bj-isvec | ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 2 | 1 | islvec 21039 | . 2 ⊢ (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing)) |
| 3 | bj-isvec.scal | . . . . 5 ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) | |
| 4 | 3 | eqcomd 2737 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑉) = 𝐾) |
| 5 | 4 | eleq1d 2816 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑉) ∈ DivRing ↔ 𝐾 ∈ DivRing)) |
| 6 | 5 | anbi2d 630 | . 2 ⊢ (𝜑 → ((𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
| 7 | 2, 6 | bitrid 283 | 1 ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Scalarcsca 17164 DivRingcdr 20645 LModclmod 20794 LVecclvec 21037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-lvec 21038 |
| This theorem is referenced by: bj-rvecvec 37339 |
| Copyright terms: Public domain | W3C validator |