Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isvec Structured version   Visualization version   GIF version

Theorem bj-isvec 36472
Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.)
Hypothesis
Ref Expression
bj-isvec.scal (πœ‘ β†’ 𝐾 = (Scalarβ€˜π‘‰))
Assertion
Ref Expression
bj-isvec (πœ‘ β†’ (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))

Proof of Theorem bj-isvec
StepHypRef Expression
1 eqid 2731 . . 3 (Scalarβ€˜π‘‰) = (Scalarβ€˜π‘‰)
21islvec 20860 . 2 (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalarβ€˜π‘‰) ∈ DivRing))
3 bj-isvec.scal . . . . 5 (πœ‘ β†’ 𝐾 = (Scalarβ€˜π‘‰))
43eqcomd 2737 . . . 4 (πœ‘ β†’ (Scalarβ€˜π‘‰) = 𝐾)
54eleq1d 2817 . . 3 (πœ‘ β†’ ((Scalarβ€˜π‘‰) ∈ DivRing ↔ 𝐾 ∈ DivRing))
65anbi2d 628 . 2 (πœ‘ β†’ ((𝑉 ∈ LMod ∧ (Scalarβ€˜π‘‰) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
72, 6bitrid 283 1 (πœ‘ β†’ (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  β€˜cfv 6543  Scalarcsca 17205  DivRingcdr 20501  LModclmod 20615  LVecclvec 20858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-lvec 20859
This theorem is referenced by:  bj-rvecvec  36484
  Copyright terms: Public domain W3C validator