| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-isvec.scal | ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) |
| Ref | Expression |
|---|---|
| bj-isvec | ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 2 | 1 | islvec 21042 | . 2 ⊢ (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing)) |
| 3 | bj-isvec.scal | . . . . 5 ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) | |
| 4 | 3 | eqcomd 2739 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑉) = 𝐾) |
| 5 | 4 | eleq1d 2818 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑉) ∈ DivRing ↔ 𝐾 ∈ DivRing)) |
| 6 | 5 | anbi2d 630 | . 2 ⊢ (𝜑 → ((𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
| 7 | 2, 6 | bitrid 283 | 1 ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 Scalarcsca 17168 DivRingcdr 20648 LModclmod 20797 LVecclvec 21040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-lvec 21041 |
| This theorem is referenced by: bj-rvecvec 37366 |
| Copyright terms: Public domain | W3C validator |