| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-isvec.scal | ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) |
| Ref | Expression |
|---|---|
| bj-isvec | ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 2 | 1 | islvec 21017 | . 2 ⊢ (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing)) |
| 3 | bj-isvec.scal | . . . . 5 ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) | |
| 4 | 3 | eqcomd 2736 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑉) = 𝐾) |
| 5 | 4 | eleq1d 2814 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑉) ∈ DivRing ↔ 𝐾 ∈ DivRing)) |
| 6 | 5 | anbi2d 630 | . 2 ⊢ (𝜑 → ((𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
| 7 | 2, 6 | bitrid 283 | 1 ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6519 Scalarcsca 17229 DivRingcdr 20644 LModclmod 20772 LVecclvec 21015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 df-lvec 21016 |
| This theorem is referenced by: bj-rvecvec 37284 |
| Copyright terms: Public domain | W3C validator |