Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isvec Structured version   Visualization version   GIF version

Theorem bj-isvec 35385
Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.)
Hypothesis
Ref Expression
bj-isvec.scal (𝜑𝐾 = (Scalar‘𝑉))
Assertion
Ref Expression
bj-isvec (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))

Proof of Theorem bj-isvec
StepHypRef Expression
1 eqid 2738 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
21islvec 20281 . 2 (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing))
3 bj-isvec.scal . . . . 5 (𝜑𝐾 = (Scalar‘𝑉))
43eqcomd 2744 . . . 4 (𝜑 → (Scalar‘𝑉) = 𝐾)
54eleq1d 2823 . . 3 (𝜑 → ((Scalar‘𝑉) ∈ DivRing ↔ 𝐾 ∈ DivRing))
65anbi2d 628 . 2 (𝜑 → ((𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
72, 6syl5bb 282 1 (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  Scalarcsca 16891  DivRingcdr 19906  LModclmod 20038  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-lvec 20280
This theorem is referenced by:  bj-rvecvec  35397
  Copyright terms: Public domain W3C validator