Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isvec Structured version   Visualization version   GIF version

Theorem bj-isvec 37005
Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.)
Hypothesis
Ref Expression
bj-isvec.scal (𝜑𝐾 = (Scalar‘𝑉))
Assertion
Ref Expression
bj-isvec (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))

Proof of Theorem bj-isvec
StepHypRef Expression
1 eqid 2726 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
21islvec 21076 . 2 (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing))
3 bj-isvec.scal . . . . 5 (𝜑𝐾 = (Scalar‘𝑉))
43eqcomd 2732 . . . 4 (𝜑 → (Scalar‘𝑉) = 𝐾)
54eleq1d 2811 . . 3 (𝜑 → ((Scalar‘𝑉) ∈ DivRing ↔ 𝐾 ∈ DivRing))
65anbi2d 628 . 2 (𝜑 → ((𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
72, 6bitrid 282 1 (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  cfv 6544  Scalarcsca 17262  DivRingcdr 20701  LModclmod 20830  LVecclvec 21074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3421  df-v 3465  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4324  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-br 5145  df-iota 6496  df-fv 6552  df-lvec 21075
This theorem is referenced by:  bj-rvecvec  37017
  Copyright terms: Public domain W3C validator