![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isvec | Structured version Visualization version GIF version |
Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-isvec.scal | ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) |
Ref | Expression |
---|---|
bj-isvec | ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
2 | 1 | islvec 21076 | . 2 ⊢ (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing)) |
3 | bj-isvec.scal | . . . . 5 ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) | |
4 | 3 | eqcomd 2732 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑉) = 𝐾) |
5 | 4 | eleq1d 2811 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑉) ∈ DivRing ↔ 𝐾 ∈ DivRing)) |
6 | 5 | anbi2d 628 | . 2 ⊢ (𝜑 → ((𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
7 | 2, 6 | bitrid 282 | 1 ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ‘cfv 6544 Scalarcsca 17262 DivRingcdr 20701 LModclmod 20830 LVecclvec 21074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3421 df-v 3465 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-br 5145 df-iota 6496 df-fv 6552 df-lvec 21075 |
This theorem is referenced by: bj-rvecvec 37017 |
Copyright terms: Public domain | W3C validator |