Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isvec Structured version   Visualization version   GIF version

Theorem bj-isvec 37253
Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.)
Hypothesis
Ref Expression
bj-isvec.scal (𝜑𝐾 = (Scalar‘𝑉))
Assertion
Ref Expression
bj-isvec (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))

Proof of Theorem bj-isvec
StepHypRef Expression
1 eqid 2740 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
21islvec 21126 . 2 (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing))
3 bj-isvec.scal . . . . 5 (𝜑𝐾 = (Scalar‘𝑉))
43eqcomd 2746 . . . 4 (𝜑 → (Scalar‘𝑉) = 𝐾)
54eleq1d 2829 . . 3 (𝜑 → ((Scalar‘𝑉) ∈ DivRing ↔ 𝐾 ∈ DivRing))
65anbi2d 629 . 2 (𝜑 → ((𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
72, 6bitrid 283 1 (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  Scalarcsca 17314  DivRingcdr 20751  LModclmod 20880  LVecclvec 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-lvec 21125
This theorem is referenced by:  bj-rvecvec  37265
  Copyright terms: Public domain W3C validator