Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isvec Structured version   Visualization version   GIF version

Theorem bj-isvec 37282
Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.)
Hypothesis
Ref Expression
bj-isvec.scal (𝜑𝐾 = (Scalar‘𝑉))
Assertion
Ref Expression
bj-isvec (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))

Proof of Theorem bj-isvec
StepHypRef Expression
1 eqid 2730 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
21islvec 21018 . 2 (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing))
3 bj-isvec.scal . . . . 5 (𝜑𝐾 = (Scalar‘𝑉))
43eqcomd 2736 . . . 4 (𝜑 → (Scalar‘𝑉) = 𝐾)
54eleq1d 2814 . . 3 (𝜑 → ((Scalar‘𝑉) ∈ DivRing ↔ 𝐾 ∈ DivRing))
65anbi2d 630 . 2 (𝜑 → ((𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
72, 6bitrid 283 1 (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6514  Scalarcsca 17230  DivRingcdr 20645  LModclmod 20773  LVecclvec 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-lvec 21017
This theorem is referenced by:  bj-rvecvec  37294
  Copyright terms: Public domain W3C validator