Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-isvec | Structured version Visualization version GIF version |
Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.) |
Ref | Expression |
---|---|
bj-isvec.scal | ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) |
Ref | Expression |
---|---|
bj-isvec | ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
2 | 1 | islvec 20366 | . 2 ⊢ (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing)) |
3 | bj-isvec.scal | . . . . 5 ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) | |
4 | 3 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑉) = 𝐾) |
5 | 4 | eleq1d 2823 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑉) ∈ DivRing ↔ 𝐾 ∈ DivRing)) |
6 | 5 | anbi2d 629 | . 2 ⊢ (𝜑 → ((𝑉 ∈ LMod ∧ (Scalar‘𝑉) ∈ DivRing) ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
7 | 2, 6 | syl5bb 283 | 1 ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Scalarcsca 16965 DivRingcdr 19991 LModclmod 20123 LVecclvec 20364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-lvec 20365 |
This theorem is referenced by: bj-rvecvec 35470 |
Copyright terms: Public domain | W3C validator |