Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2737 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2737 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 18371 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
5 | 4 | simplbi 501 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 0gc0g 16944 Mndcmnd 18173 Grpcgrp 18365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 df-grp 18368 |
This theorem is referenced by: grpcl 18373 grpass 18374 grpideu 18376 grpmndd 18377 grpplusf 18379 grpplusfo 18380 grpsgrp 18391 dfgrp2 18392 grpidcl 18395 grplid 18397 grprid 18398 dfgrp3 18462 prdsgrpd 18473 prdsinvgd 18474 mulgaddcom 18515 mulginvcom 18516 mulgz 18519 mulgneg2 18525 mulgass 18528 issubg3 18561 grpissubg 18563 subgacs 18577 0ghm 18636 pwsdiagghm 18650 cntzsubg 18731 oppggrp 18749 symgsubmefmndALT 18795 psgnunilem5 18886 psgnuni 18891 lsmcntzr 19070 pj1ghm 19093 isabl2 19179 cntrabl 19228 dprdfid 19404 dprdfeq0 19409 dprdlub 19413 dmdprdsplitlem 19424 dprddisj2 19426 dpjidcl 19445 pgpfaclem3 19470 simpgnideld 19486 dsmmsubg 20705 frlm0 20716 mdetunilem7 21515 istgp2 22988 cyc3genpm 31138 isarchi3 31160 ofldchr 31232 reofld 31258 lbslsat 31413 dimkerim 31422 fedgmullem2 31425 pwssplit4 40617 pwslnmlem2 40621 c0ghm 45142 c0snghm 45147 lcoel0 45442 |
Copyright terms: Public domain | W3C validator |