| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2730 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 18878 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-grp 18875 |
| This theorem is referenced by: grpcl 18880 grpass 18881 grpideu 18883 grpmndd 18885 grpplusf 18887 grpplusfo 18888 grpsgrp 18899 dfgrp2 18901 grpidcl 18904 grplid 18906 grprid 18907 dfgrp3 18978 prdsgrpd 18989 prdsinvgd 18990 mulgaddcom 19037 mulginvcom 19038 mulgz 19041 mulgneg2 19047 mulgass 19050 issubg3 19083 grpissubg 19085 0subg 19090 subgacs 19100 0ghm 19169 pwsdiagghm 19183 cntzsubg 19278 oppggrp 19296 symgsubmefmndALT 19340 psgnunilem5 19431 psgnuni 19436 0subgALT 19505 lsmcntzr 19617 pj1ghm 19640 isabl2 19727 cntrabl 19780 dprdfid 19956 dprdfeq0 19961 dprdlub 19965 dmdprdsplitlem 19976 dprddisj2 19978 dpjidcl 19997 pgpfaclem3 20022 simpgnideld 20038 c0ghm 20377 c0snghm 20380 dsmmsubg 21659 frlm0 21670 mdetunilem7 22512 istgp2 23985 cyc3genpm 33116 isarchi3 33148 reofld 33322 lbslsat 33619 dimkerim 33630 fedgmullem2 33633 primrootscoprbij 42097 grpods 42189 pwssplit4 43085 pwslnmlem2 43089 lcoel0 48421 |
| Copyright terms: Public domain | W3C validator |