| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2730 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 18844 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 0gc0g 17335 Mndcmnd 18634 Grpcgrp 18838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-grp 18841 |
| This theorem is referenced by: grpcl 18846 grpass 18847 grpideu 18849 grpmndd 18851 grpplusf 18853 grpplusfo 18854 grpsgrp 18865 dfgrp2 18867 grpidcl 18870 grplid 18872 grprid 18873 dfgrp3 18944 prdsgrpd 18955 prdsinvgd 18956 mulgaddcom 19003 mulginvcom 19004 mulgz 19007 mulgneg2 19013 mulgass 19016 issubg3 19049 grpissubg 19051 0subg 19056 subgacs 19066 0ghm 19135 pwsdiagghm 19149 cntzsubg 19244 oppggrp 19262 symgsubmefmndALT 19308 psgnunilem5 19399 psgnuni 19404 0subgALT 19473 lsmcntzr 19585 pj1ghm 19608 isabl2 19695 cntrabl 19748 dprdfid 19924 dprdfeq0 19929 dprdlub 19933 dmdprdsplitlem 19944 dprddisj2 19946 dpjidcl 19965 pgpfaclem3 19990 simpgnideld 20006 c0ghm 20372 c0snghm 20375 dsmmsubg 21673 frlm0 21684 mdetunilem7 22526 istgp2 23999 cyc3genpm 33111 isarchi3 33146 reofld 33298 lbslsat 33619 dimkerim 33630 fedgmullem2 33633 primrootscoprbij 42114 grpods 42206 pwssplit4 43101 pwslnmlem2 43105 lcoel0 48439 |
| Copyright terms: Public domain | W3C validator |