| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 18836 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Mndcmnd 18626 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-grp 18833 |
| This theorem is referenced by: grpcl 18838 grpass 18839 grpideu 18841 grpmndd 18843 grpplusf 18845 grpplusfo 18846 grpsgrp 18857 dfgrp2 18859 grpidcl 18862 grplid 18864 grprid 18865 dfgrp3 18936 prdsgrpd 18947 prdsinvgd 18948 mulgaddcom 18995 mulginvcom 18996 mulgz 18999 mulgneg2 19005 mulgass 19008 issubg3 19041 grpissubg 19043 0subg 19048 subgacs 19058 0ghm 19127 pwsdiagghm 19141 cntzsubg 19236 oppggrp 19254 symgsubmefmndALT 19300 psgnunilem5 19391 psgnuni 19396 0subgALT 19465 lsmcntzr 19577 pj1ghm 19600 isabl2 19687 cntrabl 19740 dprdfid 19916 dprdfeq0 19921 dprdlub 19925 dmdprdsplitlem 19936 dprddisj2 19938 dpjidcl 19957 pgpfaclem3 19982 simpgnideld 19998 c0ghm 20364 c0snghm 20367 dsmmsubg 21668 frlm0 21679 mdetunilem7 22521 istgp2 23994 cyc3genpm 33107 isarchi3 33139 reofld 33291 lbslsat 33588 dimkerim 33599 fedgmullem2 33602 primrootscoprbij 42075 grpods 42167 pwssplit4 43062 pwslnmlem2 43066 lcoel0 48401 |
| Copyright terms: Public domain | W3C validator |