![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2740 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 18979 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Mndcmnd 18772 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-grp 18976 |
This theorem is referenced by: grpcl 18981 grpass 18982 grpideu 18984 grpmndd 18986 grpplusf 18988 grpplusfo 18989 grpsgrp 19000 dfgrp2 19002 grpidcl 19005 grplid 19007 grprid 19008 dfgrp3 19079 prdsgrpd 19090 prdsinvgd 19091 mulgaddcom 19138 mulginvcom 19139 mulgz 19142 mulgneg2 19148 mulgass 19151 issubg3 19184 grpissubg 19186 0subg 19191 subgacs 19201 0ghm 19270 pwsdiagghm 19284 cntzsubg 19379 oppggrp 19400 symgsubmefmndALT 19445 psgnunilem5 19536 psgnuni 19541 0subgALT 19610 lsmcntzr 19722 pj1ghm 19745 isabl2 19832 cntrabl 19885 dprdfid 20061 dprdfeq0 20066 dprdlub 20070 dmdprdsplitlem 20081 dprddisj2 20083 dpjidcl 20102 pgpfaclem3 20127 simpgnideld 20143 c0ghm 20487 c0snghm 20490 dsmmsubg 21786 frlm0 21797 mdetunilem7 22645 istgp2 24120 cyc3genpm 33145 isarchi3 33167 reofld 33337 lbslsat 33629 dimkerim 33640 fedgmullem2 33643 primrootscoprbij 42059 grpods 42151 pwssplit4 43046 pwslnmlem2 43050 lcoel0 48157 |
Copyright terms: Public domain | W3C validator |