Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2737 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2737 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 18679 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
5 | 4 | simplbi 499 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 ‘cfv 6483 (class class class)co 7341 Basecbs 17009 +gcplusg 17059 0gc0g 17247 Mndcmnd 18482 Grpcgrp 18673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-iota 6435 df-fv 6491 df-ov 7344 df-grp 18676 |
This theorem is referenced by: grpcl 18681 grpass 18682 grpideu 18684 grpmndd 18685 grpplusf 18687 grpplusfo 18688 grpsgrp 18699 dfgrp2 18700 grpidcl 18703 grplid 18705 grprid 18706 dfgrp3 18770 prdsgrpd 18781 prdsinvgd 18782 mulgaddcom 18823 mulginvcom 18824 mulgz 18827 mulgneg2 18833 mulgass 18836 issubg3 18869 grpissubg 18871 subgacs 18885 0ghm 18944 pwsdiagghm 18958 cntzsubg 19039 oppggrp 19060 symgsubmefmndALT 19107 psgnunilem5 19198 psgnuni 19203 lsmcntzr 19381 pj1ghm 19404 isabl2 19490 cntrabl 19539 dprdfid 19714 dprdfeq0 19719 dprdlub 19723 dmdprdsplitlem 19734 dprddisj2 19736 dpjidcl 19755 pgpfaclem3 19780 simpgnideld 19796 dsmmsubg 21055 frlm0 21066 mdetunilem7 21872 istgp2 23347 cyc3genpm 31704 isarchi3 31726 ofldchr 31811 reofld 31838 lbslsat 31995 dimkerim 32004 fedgmullem2 32007 pwssplit4 41228 pwslnmlem2 41232 c0ghm 45887 c0snghm 45892 lcoel0 46187 |
Copyright terms: Public domain | W3C validator |