| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2733 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 18862 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 0gc0g 17353 Mndcmnd 18652 Grpcgrp 18856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-grp 18859 |
| This theorem is referenced by: grpcl 18864 grpass 18865 grpideu 18867 grpmndd 18869 grpplusf 18871 grpplusfo 18872 grpsgrp 18883 dfgrp2 18885 grpidcl 18888 grplid 18890 grprid 18891 dfgrp3 18962 prdsgrpd 18973 prdsinvgd 18974 mulgaddcom 19021 mulginvcom 19022 mulgz 19025 mulgneg2 19031 mulgass 19034 issubg3 19067 grpissubg 19069 0subg 19074 subgacs 19083 0ghm 19152 pwsdiagghm 19166 cntzsubg 19261 oppggrp 19279 symgsubmefmndALT 19325 psgnunilem5 19416 psgnuni 19421 0subgALT 19490 lsmcntzr 19602 pj1ghm 19625 isabl2 19712 cntrabl 19765 dprdfid 19941 dprdfeq0 19946 dprdlub 19950 dmdprdsplitlem 19961 dprddisj2 19963 dpjidcl 19982 pgpfaclem3 20007 simpgnideld 20023 c0ghm 20389 c0snghm 20392 dsmmsubg 21690 frlm0 21701 mdetunilem7 22543 istgp2 24016 cyc3genpm 33132 isarchi3 33167 reofld 33319 lbslsat 33640 dimkerim 33651 fedgmullem2 33654 primrootscoprbij 42205 grpods 42297 pwssplit4 43196 pwslnmlem2 43200 lcoel0 48543 |
| Copyright terms: Public domain | W3C validator |