| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2736 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2736 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 18927 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Mndcmnd 18717 Grpcgrp 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-grp 18924 |
| This theorem is referenced by: grpcl 18929 grpass 18930 grpideu 18932 grpmndd 18934 grpplusf 18936 grpplusfo 18937 grpsgrp 18948 dfgrp2 18950 grpidcl 18953 grplid 18955 grprid 18956 dfgrp3 19027 prdsgrpd 19038 prdsinvgd 19039 mulgaddcom 19086 mulginvcom 19087 mulgz 19090 mulgneg2 19096 mulgass 19099 issubg3 19132 grpissubg 19134 0subg 19139 subgacs 19149 0ghm 19218 pwsdiagghm 19232 cntzsubg 19327 oppggrp 19345 symgsubmefmndALT 19389 psgnunilem5 19480 psgnuni 19485 0subgALT 19554 lsmcntzr 19666 pj1ghm 19689 isabl2 19776 cntrabl 19829 dprdfid 20005 dprdfeq0 20010 dprdlub 20014 dmdprdsplitlem 20025 dprddisj2 20027 dpjidcl 20046 pgpfaclem3 20071 simpgnideld 20087 c0ghm 20426 c0snghm 20429 dsmmsubg 21708 frlm0 21719 mdetunilem7 22561 istgp2 24034 cyc3genpm 33168 isarchi3 33190 reofld 33364 lbslsat 33661 dimkerim 33672 fedgmullem2 33675 primrootscoprbij 42120 grpods 42212 pwssplit4 43088 pwslnmlem2 43092 lcoel0 48384 |
| Copyright terms: Public domain | W3C validator |