| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 18871 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mndcmnd 18661 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-grp 18868 |
| This theorem is referenced by: grpcl 18873 grpass 18874 grpideu 18876 grpmndd 18878 grpplusf 18880 grpplusfo 18881 grpsgrp 18892 dfgrp2 18894 grpidcl 18897 grplid 18899 grprid 18900 dfgrp3 18971 prdsgrpd 18982 prdsinvgd 18983 mulgaddcom 19030 mulginvcom 19031 mulgz 19034 mulgneg2 19040 mulgass 19043 issubg3 19076 grpissubg 19078 0subg 19083 subgacs 19093 0ghm 19162 pwsdiagghm 19176 cntzsubg 19271 oppggrp 19289 symgsubmefmndALT 19333 psgnunilem5 19424 psgnuni 19429 0subgALT 19498 lsmcntzr 19610 pj1ghm 19633 isabl2 19720 cntrabl 19773 dprdfid 19949 dprdfeq0 19954 dprdlub 19958 dmdprdsplitlem 19969 dprddisj2 19971 dpjidcl 19990 pgpfaclem3 20015 simpgnideld 20031 c0ghm 20370 c0snghm 20373 dsmmsubg 21652 frlm0 21663 mdetunilem7 22505 istgp2 23978 cyc3genpm 33109 isarchi3 33141 reofld 33315 lbslsat 33612 dimkerim 33623 fedgmullem2 33626 primrootscoprbij 42090 grpods 42182 pwssplit4 43078 pwslnmlem2 43082 lcoel0 48417 |
| Copyright terms: Public domain | W3C validator |