Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 18583 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
5 | 4 | simplbi 498 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Mndcmnd 18385 Grpcgrp 18577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-grp 18580 |
This theorem is referenced by: grpcl 18585 grpass 18586 grpideu 18588 grpmndd 18589 grpplusf 18591 grpplusfo 18592 grpsgrp 18603 dfgrp2 18604 grpidcl 18607 grplid 18609 grprid 18610 dfgrp3 18674 prdsgrpd 18685 prdsinvgd 18686 mulgaddcom 18727 mulginvcom 18728 mulgz 18731 mulgneg2 18737 mulgass 18740 issubg3 18773 grpissubg 18775 subgacs 18789 0ghm 18848 pwsdiagghm 18862 cntzsubg 18943 oppggrp 18964 symgsubmefmndALT 19011 psgnunilem5 19102 psgnuni 19107 lsmcntzr 19286 pj1ghm 19309 isabl2 19395 cntrabl 19444 dprdfid 19620 dprdfeq0 19625 dprdlub 19629 dmdprdsplitlem 19640 dprddisj2 19642 dpjidcl 19661 pgpfaclem3 19686 simpgnideld 19702 dsmmsubg 20950 frlm0 20961 mdetunilem7 21767 istgp2 23242 cyc3genpm 31419 isarchi3 31441 ofldchr 31513 reofld 31544 lbslsat 31699 dimkerim 31708 fedgmullem2 31711 pwssplit4 40914 pwslnmlem2 40918 c0ghm 45469 c0snghm 45474 lcoel0 45769 |
Copyright terms: Public domain | W3C validator |