Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 18498 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mndcmnd 18300 Grpcgrp 18492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-grp 18495 |
This theorem is referenced by: grpcl 18500 grpass 18501 grpideu 18503 grpmndd 18504 grpplusf 18506 grpplusfo 18507 grpsgrp 18518 dfgrp2 18519 grpidcl 18522 grplid 18524 grprid 18525 dfgrp3 18589 prdsgrpd 18600 prdsinvgd 18601 mulgaddcom 18642 mulginvcom 18643 mulgz 18646 mulgneg2 18652 mulgass 18655 issubg3 18688 grpissubg 18690 subgacs 18704 0ghm 18763 pwsdiagghm 18777 cntzsubg 18858 oppggrp 18879 symgsubmefmndALT 18926 psgnunilem5 19017 psgnuni 19022 lsmcntzr 19201 pj1ghm 19224 isabl2 19310 cntrabl 19359 dprdfid 19535 dprdfeq0 19540 dprdlub 19544 dmdprdsplitlem 19555 dprddisj2 19557 dpjidcl 19576 pgpfaclem3 19601 simpgnideld 19617 dsmmsubg 20860 frlm0 20871 mdetunilem7 21675 istgp2 23150 cyc3genpm 31321 isarchi3 31343 ofldchr 31415 reofld 31446 lbslsat 31601 dimkerim 31610 fedgmullem2 31613 pwssplit4 40830 pwslnmlem2 40834 c0ghm 45357 c0snghm 45362 lcoel0 45657 |
Copyright terms: Public domain | W3C validator |