Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbsb3v Structured version   Visualization version   GIF version

Theorem bj-hbsb3v 35326
Description: Version of hbsb3 2486 with a disjoint variable condition, which does not require ax-13 2371. (Remark: the unbundled version of nfs1 2487 is given by bj-nfs1v 35324.) (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-hbsb3v.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
bj-hbsb3v ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-hbsb3v
StepHypRef Expression
1 bj-hbsb3v.1 . . 3 (𝜑 → ∀𝑦𝜑)
21sbimi 2078 . 2 ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑)
3 bj-hbsb2av 35325 . 2 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
42, 3syl 17 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2138  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-nf 1787  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator