Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbsb2av Structured version   Visualization version   GIF version

Theorem bj-hbsb2av 34039
Description: Version of hbsb2a 2521 with a disjoint variable condition, which does not require ax-13 2385. (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-hbsb2av ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-hbsb2av
StepHypRef Expression
1 sb4av 2237 . 2 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
2 sb6 2086 . . . 4 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
32biimpri 229 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
43axc4i 2335 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥[𝑦 / 𝑥]𝜑)
51, 4syl 17 1 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1528  [wsb 2062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-10 2138  ax-12 2169
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ex 1774  df-nf 1778  df-sb 2063
This theorem is referenced by:  bj-hbsb3v  34040
  Copyright terms: Public domain W3C validator