Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfsab1 Structured version   Visualization version   GIF version

Theorem bj-nfsab1 36755
Description: Remove dependency on ax-13 2375 from nfsab1 2720. UPDATE / TODO: nfsab1 2720 does not use ax-13 2375 either anymore; bj-nfsab1 36755 is shorter than nfsab1 2720 but uses ax-12 2176. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfsab1 𝑥 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-nfsab1
StepHypRef Expression
1 hbab1 2721 . 2 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
21nf5i 2145 1 𝑥 𝑦 ∈ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wnf 1782  wcel 2107  {cab 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-10 2140  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator