Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfsab1 | Structured version Visualization version GIF version |
Description: Remove dependency on ax-13 2372 from nfsab1 2723. UPDATE / TODO: nfsab1 2723 does not use ax-13 2372 either anymore; bj-nfsab1 34998 is shorter than nfsab1 2723 but uses ax-12 2171. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nfsab1 | ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbab1 2724 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
2 | 1 | nf5i 2142 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1786 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |