Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfsab1 Structured version   Visualization version   GIF version

Theorem bj-nfsab1 34925
Description: Remove dependency on ax-13 2372 from nfsab1 2723. UPDATE / TODO: nfsab1 2723 does not use ax-13 2372 either anymore; bj-nfsab1 34925 is shorter than nfsab1 2723 but uses ax-12 2173. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfsab1 𝑥 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-nfsab1
StepHypRef Expression
1 hbab1 2724 . 2 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
21nf5i 2144 1 𝑥 𝑦 ∈ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wnf 1787  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator