Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isseti Structured version   Visualization version   GIF version

Theorem bj-isseti 34965
Description: Version of isseti 3438 with a class variable 𝑉 in the hypothesis instead of V for extra generality. This is indeed more general than isseti 3438 as long as elex 3441 is not available (and the non-dependence of bj-isseti 34965 on special properties of the universal class V is obvious). Use bj-issetiv 34964 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-isseti.1 𝐴𝑉
Assertion
Ref Expression
bj-isseti 𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-isseti
StepHypRef Expression
1 bj-isseti.1 . 2 𝐴𝑉
2 elisset 2821 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
31, 2ax-mp 5 1 𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wex 1787  wcel 2112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-clel 2818
This theorem is referenced by:  bj-rexcom4b  34970
  Copyright terms: Public domain W3C validator