| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rexcom4b | Structured version Visualization version GIF version | ||
| Description: Remove from rexcom4b 3497 dependency on ax-ext 2706 and ax-13 2375 (and on df-or 848, df-cleq 2726, df-nfc 2884, df-v 3466). The hypothesis uses 𝑉 instead of V (see bj-isseti 36820 for the motivation). Use bj-rexcom4bv 36824 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-rexcom4b.1 | ⊢ 𝐵 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| bj-rexcom4b | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4a 3277 | . 2 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) | |
| 2 | bj-rexcom4b.1 | . . . . 5 ⊢ 𝐵 ∈ 𝑉 | |
| 3 | 2 | bj-isseti 36820 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐵 |
| 4 | 3 | biantru 529 | . . 3 ⊢ (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
| 5 | 4 | rexbii 3082 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
| 6 | 1, 5 | bitr4i 278 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-11 2156 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-clel 2808 df-rex 3060 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |