Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rexcom4bv | Structured version Visualization version GIF version |
Description: Version of rexcom4b 3461 and bj-rexcom4b 35068 with a disjoint variable condition on 𝑥, 𝑉, hence removing dependency on df-sb 2068 and df-clab 2716 (so that it depends on df-clel 2816 and df-rex 3070 only on top of first-order logic). Prefer its use over bj-rexcom4b 35068 when sufficient (in particular when 𝑉 is substituted for V). Note the 𝑉 in the hypothesis instead of V. (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-rexcom4bv.1 | ⊢ 𝐵 ∈ 𝑉 |
Ref | Expression |
---|---|
bj-rexcom4bv | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4a 3236 | . 2 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) | |
2 | bj-rexcom4bv.1 | . . . . 5 ⊢ 𝐵 ∈ 𝑉 | |
3 | 2 | bj-issetiv 35062 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐵 |
4 | 3 | biantru 530 | . . 3 ⊢ (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
5 | 4 | rexbii 3181 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
6 | 1, 5 | bitr4i 277 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2816 df-rex 3070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |