Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbidmOLD Structured version   Visualization version   GIF version

Theorem bj-sbidmOLD 36816
Description: Obsolete proof of sbidm 2518 temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-sbidmOLD ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem bj-sbidmOLD
StepHypRef Expression
1 equsb2 2500 . . 3 [𝑦 / 𝑥]𝑦 = 𝑥
2 sbequ12r 2253 . . . 4 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
32sbimi 2074 . . 3 ([𝑦 / 𝑥]𝑦 = 𝑥 → [𝑦 / 𝑥]([𝑦 / 𝑥]𝜑𝜑))
41, 3ax-mp 5 . 2 [𝑦 / 𝑥]([𝑦 / 𝑥]𝜑𝜑)
5 sbbi 2312 . 2 ([𝑦 / 𝑥]([𝑦 / 𝑥]𝜑𝜑) ↔ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
64, 5mpbi 230 1 ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator