Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbidmOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of sbidm 2514 temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-sbidmOLD | ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb2 2496 | . . 3 ⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | |
2 | sbequ12r 2248 | . . . 4 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 2 | sbimi 2078 | . . 3 ⊢ ([𝑦 / 𝑥]𝑦 = 𝑥 → [𝑦 / 𝑥]([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥]([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
5 | sbbi 2308 | . 2 ⊢ ([𝑦 / 𝑥]([𝑦 / 𝑥]𝜑 ↔ 𝜑) ↔ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
6 | 4, 5 | mpbi 229 | 1 ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |