| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbidmOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of sbidm 2514 temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-sbidmOLD | ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb2 2496 | . . 3 ⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | |
| 2 | sbequ12r 2252 | . . . 4 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 3 | 2 | sbimi 2074 | . . 3 ⊢ ([𝑦 / 𝑥]𝑦 = 𝑥 → [𝑦 / 𝑥]([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥]([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| 5 | sbbi 2308 | . 2 ⊢ ([𝑦 / 𝑥]([𝑦 / 𝑥]𝜑 ↔ 𝜑) ↔ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 6 | 4, 5 | mpbi 230 | 1 ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |