| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-n0i | Structured version Visualization version GIF version | ||
| Description: Inference associated with n0 4333. Shortens 2ndcdisj 23409 (2888>2878), notzfaus 5343 (264>253). (Contributed by BJ, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-n0i.1 | ⊢ 𝐴 ≠ ∅ |
| Ref | Expression |
|---|---|
| bj-n0i | ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-n0i.1 | . 2 ⊢ 𝐴 ≠ ∅ | |
| 2 | n0 4333 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-ne 2932 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |