Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-n0i | Structured version Visualization version GIF version |
Description: Inference associated with n0 4280. Shortens 2ndcdisj 22607 (2888>2878), notzfaus 5285 (264>253). (Contributed by BJ, 22-Apr-2019.) |
Ref | Expression |
---|---|
bj-n0i.1 | ⊢ 𝐴 ≠ ∅ |
Ref | Expression |
---|---|
bj-n0i | ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-n0i.1 | . 2 ⊢ 𝐴 ≠ ∅ | |
2 | n0 4280 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-ne 2944 df-dif 3890 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |