![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-n0i | Structured version Visualization version GIF version |
Description: Inference associated with n0 4346. Shortens 2ndcdisj 23280 (2888>2878), notzfaus 5361 (264>253). (Contributed by BJ, 22-Apr-2019.) |
Ref | Expression |
---|---|
bj-n0i.1 | ⊢ 𝐴 ≠ ∅ |
Ref | Expression |
---|---|
bj-n0i | ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-n0i.1 | . 2 ⊢ 𝐴 ≠ ∅ | |
2 | n0 4346 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-ne 2940 df-dif 3951 df-nul 4323 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |