Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-disjsn01 Structured version   Visualization version   GIF version

Theorem bj-disjsn01 34879
Description: Disjointness of the singletons containing 0 and 1. This is a consequence of bj-disjcsn 34878 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-disjsn01 ({∅} ∩ {1o}) = ∅

Proof of Theorem bj-disjsn01
StepHypRef Expression
1 1n0 8221 . . 3 1o ≠ ∅
21necomi 2995 . 2 ∅ ≠ 1o
3 disjsn2 4628 . 2 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
42, 3ax-mp 5 1 ({∅} ∩ {1o}) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wne 2940  cin 3865  c0 4237  {csn 4541  1oc1o 8195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-nul 4238  df-sn 4542  df-suc 6219  df-1o 8202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator