Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-disjsn01 Structured version   Visualization version   GIF version

Theorem bj-disjsn01 36965
Description: Disjointness of the singletons containing 0 and 1. This is a consequence of disjcsn 9488 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-disjsn01 ({∅} ∩ {1o}) = ∅

Proof of Theorem bj-disjsn01
StepHypRef Expression
1 1n0 8398 . . 3 1o ≠ ∅
21necomi 2980 . 2 ∅ ≠ 1o
3 disjsn2 4663 . 2 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
42, 3ax-mp 5 1 ({∅} ∩ {1o}) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wne 2926  cin 3899  c0 4281  {csn 4574  1oc1o 8373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-nul 4282  df-sn 4575  df-suc 6308  df-1o 8380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator