![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disjsn01 | Structured version Visualization version GIF version |
Description: Disjointness of the singletons containing 0 and 1. This is a consequence of disjcsn 9648 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-disjsn01 | ⊢ ({∅} ∩ {1o}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8531 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 2994 | . 2 ⊢ ∅ ≠ 1o |
3 | disjsn2 4718 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ({∅} ∩ {1o}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ≠ wne 2939 ∩ cin 3963 ∅c0 4340 {csn 4632 1oc1o 8504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5313 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-nul 4341 df-sn 4633 df-suc 6395 df-1o 8511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |