| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disjsn01 | Structured version Visualization version GIF version | ||
| Description: Disjointness of the singletons containing 0 and 1. This is a consequence of disjcsn 9503 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-disjsn01 | ⊢ ({∅} ∩ {1o}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8412 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2984 | . 2 ⊢ ∅ ≠ 1o |
| 3 | disjsn2 4666 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ({∅} ∩ {1o}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2930 ∩ cin 3898 ∅c0 4284 {csn 4577 1oc1o 8387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-nul 4285 df-sn 4578 df-suc 6320 df-1o 8394 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |