![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disjsn01 | Structured version Visualization version GIF version |
Description: Disjointness of the singletons containing 0 and 1. This is a consequence of disjcsn 9595 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-disjsn01 | ⊢ ({∅} ∩ {1o}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8483 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 2987 | . 2 ⊢ ∅ ≠ 1o |
3 | disjsn2 4708 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ({∅} ∩ {1o}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ≠ wne 2932 ∩ cin 3939 ∅c0 4314 {csn 4620 1oc1o 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-nul 5296 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-nul 4315 df-sn 4621 df-suc 6360 df-1o 8461 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |