| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disjsn01 | Structured version Visualization version GIF version | ||
| Description: Disjointness of the singletons containing 0 and 1. This is a consequence of disjcsn 9625 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-disjsn01 | ⊢ ({∅} ∩ {1o}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8507 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2985 | . 2 ⊢ ∅ ≠ 1o |
| 3 | disjsn2 4692 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ({∅} ∩ {1o}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ≠ wne 2931 ∩ cin 3930 ∅c0 4313 {csn 4606 1oc1o 8480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-nul 4314 df-sn 4607 df-suc 6369 df-1o 8487 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |