Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-disjsn01 Structured version   Visualization version   GIF version

Theorem bj-disjsn01 36933
Description: Disjointness of the singletons containing 0 and 1. This is a consequence of disjcsn 9533 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-disjsn01 ({∅} ∩ {1o}) = ∅

Proof of Theorem bj-disjsn01
StepHypRef Expression
1 1n0 8429 . . 3 1o ≠ ∅
21necomi 2979 . 2 ∅ ≠ 1o
3 disjsn2 4672 . 2 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
42, 3ax-mp 5 1 ({∅} ∩ {1o}) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wne 2925  cin 3910  c0 4292  {csn 4585  1oc1o 8404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-nul 4293  df-sn 4586  df-suc 6326  df-1o 8411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator