| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disjsn01 | Structured version Visualization version GIF version | ||
| Description: Disjointness of the singletons containing 0 and 1. This is a consequence of disjcsn 9575 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-disjsn01 | ⊢ ({∅} ∩ {1o}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8463 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2981 | . 2 ⊢ ∅ ≠ 1o |
| 3 | disjsn2 4684 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ({∅} ∩ {1o}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2927 ∩ cin 3921 ∅c0 4304 {csn 4597 1oc1o 8436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5269 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-nul 4305 df-sn 4598 df-suc 6346 df-1o 8443 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |