Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-disjsn01 Structured version   Visualization version   GIF version

Theorem bj-disjsn01 36947
Description: Disjointness of the singletons containing 0 and 1. This is a consequence of disjcsn 9648 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-disjsn01 ({∅} ∩ {1o}) = ∅

Proof of Theorem bj-disjsn01
StepHypRef Expression
1 1n0 8531 . . 3 1o ≠ ∅
21necomi 2994 . 2 ∅ ≠ 1o
3 disjsn2 4718 . 2 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
42, 3ax-mp 5 1 ({∅} ∩ {1o}) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wne 2939  cin 3963  c0 4340  {csn 4632  1oc1o 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-nul 5313
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-nul 4341  df-sn 4633  df-suc 6395  df-1o 8511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator