Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disjsn01 | Structured version Visualization version GIF version |
Description: Disjointness of the singletons containing 0 and 1. This is a consequence of bj-disjcsn 34878 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-disjsn01 | ⊢ ({∅} ∩ {1o}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8221 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 2995 | . 2 ⊢ ∅ ≠ 1o |
3 | disjsn2 4628 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ({∅} ∩ {1o}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ≠ wne 2940 ∩ cin 3865 ∅c0 4237 {csn 4541 1oc1o 8195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-nul 4238 df-sn 4542 df-suc 6219 df-1o 8202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |