Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  currysetALT Structured version   Visualization version   GIF version

Theorem currysetALT 36135
Description: Alternate proof of curryset 36131, or more precisely alternate exposal of the same proof. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
currysetALT ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem currysetALT
StepHypRef Expression
1 eqid 2731 . 2 {𝑥 ∣ (𝑥𝑥𝜑)} = {𝑥 ∣ (𝑥𝑥𝜑)}
21currysetlem3 36134 1 ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2105  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-v 3475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator