Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  currysetALT Structured version   Visualization version   GIF version

Theorem currysetALT 34329
 Description: Alternate proof of curryset 34325, or more precisely alternate exposal of the same proof. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
currysetALT ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem currysetALT
StepHypRef Expression
1 eqid 2824 . 2 {𝑥 ∣ (𝑥𝑥𝜑)} = {𝑥 ∣ (𝑥𝑥𝜑)}
21currysetlem3 34328 1 ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∈ wcel 2115  {cab 2802 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-v 3482 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator