Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  currysetALT Structured version   Visualization version   GIF version

Theorem currysetALT 36916
Description: Alternate proof of curryset 36912, or more precisely alternate exposal of the same proof. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
currysetALT ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem currysetALT
StepHypRef Expression
1 eqid 2740 . 2 {𝑥 ∣ (𝑥𝑥𝜑)} = {𝑥 ∣ (𝑥𝑥𝜑)}
21currysetlem3 36915 1 ¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator