| Step | Hyp | Ref
| Expression |
| 1 | | is2ndc 23454 |
. . 3
⊢ (𝐽 ∈ 2ndω
↔ ∃𝑏 ∈
TopBases (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝐽)) |
| 2 | | omex 9683 |
. . . . . . 7
⊢ ω
∈ V |
| 3 | 2 | brdom 9001 |
. . . . . 6
⊢ (𝑏 ≼ ω ↔
∃𝑓 𝑓:𝑏–1-1→ω) |
| 4 | | ssrab2 4080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆ ran 𝑓 |
| 5 | | f1f 6804 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓:𝑏–1-1→ω → 𝑓:𝑏⟶ω) |
| 6 | 5 | frnd 6744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓:𝑏–1-1→ω → ran 𝑓 ⊆ ω) |
| 7 | 6 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → ran 𝑓 ⊆ ω) |
| 8 | 4, 7 | sstrid 3995 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆
ω) |
| 9 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆
ω) |
| 10 | | eldifsn 4786 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ↔
(𝐵 ∈
(topGen‘𝑏) ∧
𝐵 ≠
∅)) |
| 11 | | n0 4353 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝐵) |
| 12 | | tg2 22972 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐵 ∈ (topGen‘𝑏) ∧ 𝑦 ∈ 𝐵) → ∃𝑧 ∈ 𝑏 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵)) |
| 13 | | omsson 7891 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ω
⊆ On |
| 14 | 8, 13 | sstrdi 3996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆
On) |
| 15 | 14 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆
On) |
| 16 | | f1fn 6805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓:𝑏–1-1→ω → 𝑓 Fn 𝑏) |
| 17 | 16 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑓 Fn 𝑏) |
| 18 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ∈ 𝑏) |
| 19 | | fnfvelrn 7100 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 Fn 𝑏 ∧ 𝑧 ∈ 𝑏) → (𝑓‘𝑧) ∈ ran 𝑓) |
| 20 | 17, 18, 19 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → (𝑓‘𝑧) ∈ ran 𝑓) |
| 21 | | f1f1orn 6859 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓:𝑏–1-1→ω → 𝑓:𝑏–1-1-onto→ran
𝑓) |
| 22 | 21 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑓:𝑏–1-1-onto→ran
𝑓) |
| 23 | | f1ocnvfv1 7296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓:𝑏–1-1-onto→ran
𝑓 ∧ 𝑧 ∈ 𝑏) → (◡𝑓‘(𝑓‘𝑧)) = 𝑧) |
| 24 | 22, 18, 23 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → (◡𝑓‘(𝑓‘𝑧)) = 𝑧) |
| 25 | | simprrr 782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ⊆ 𝐵) |
| 26 | | velpw 4605 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ 𝒫 𝐵 ↔ 𝑧 ⊆ 𝐵) |
| 27 | 25, 26 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ∈ 𝒫 𝐵) |
| 28 | | simprrl 781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑦 ∈ 𝑧) |
| 29 | 28 | ne0d 4342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ≠ ∅) |
| 30 | | eldifsn 4786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ (𝒫 𝐵 ∖ {∅}) ↔
(𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ≠ ∅)) |
| 31 | 27, 29, 30 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ∈ (𝒫 𝐵 ∖ {∅})) |
| 32 | 24, 31 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → (◡𝑓‘(𝑓‘𝑧)) ∈ (𝒫 𝐵 ∖ {∅})) |
| 33 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = (𝑓‘𝑧) → (◡𝑓‘𝑛) = (◡𝑓‘(𝑓‘𝑧))) |
| 34 | 33 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = (𝑓‘𝑧) → ((◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅}) ↔ (◡𝑓‘(𝑓‘𝑧)) ∈ (𝒫 𝐵 ∖ {∅}))) |
| 35 | 34 | rspcev 3622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓‘𝑧) ∈ ran 𝑓 ∧ (◡𝑓‘(𝑓‘𝑧)) ∈ (𝒫 𝐵 ∖ {∅})) → ∃𝑛 ∈ ran 𝑓(◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})) |
| 36 | 20, 32, 35 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → ∃𝑛 ∈ ran 𝑓(◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})) |
| 37 | | rabn0 4389 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ({𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ≠ ∅ ↔
∃𝑛 ∈ ran 𝑓(◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})) |
| 38 | 36, 37 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ≠
∅) |
| 39 | | onint 7810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (({𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆ On ∧ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ≠ ∅) →
∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
| 40 | 15, 38, 39 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
| 41 | 40 | rexlimdvaa 3156 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → (∃𝑧 ∈ 𝑏 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵) → ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 42 | 12, 41 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ∈ (topGen‘𝑏) ∧ 𝑦 ∈ 𝐵) → ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 43 | 42 | expdimp 452 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ (topGen‘𝑏)) → (𝑦 ∈ 𝐵 → ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 44 | 43 | exlimdv 1933 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ (topGen‘𝑏)) → (∃𝑦 𝑦 ∈ 𝐵 → ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 45 | 11, 44 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ (topGen‘𝑏)) → (𝐵 ≠ ∅ → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 46 | 45 | expimpd 453 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ∈ (topGen‘𝑏) ∧ 𝐵 ≠ ∅) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 47 | 10, 46 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 48 | 47 | impr 454 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
| 49 | 9, 48 | sseldd 3984 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω) |
| 50 | 49 | expr 456 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω)) |
| 51 | 50 | ralimdva 3167 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → ∀𝑥 ∈ 𝐴 ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω)) |
| 52 | 51 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → ∀𝑥 ∈ 𝐴 ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω) |
| 53 | 52 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω) |
| 54 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) = (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
| 55 | 54 | fmpt 7130 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝐴 ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ ω ↔
(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴⟶ω) |
| 56 | 53, 55 | sylib 218 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴⟶ω) |
| 57 | | neeq1 3003 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝑓‘𝑧) = if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → ((◡𝑓‘𝑧) ≠ ∅ ↔ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ≠
∅)) |
| 58 | | neeq1 3003 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1o = if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → (1o ≠
∅ ↔ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ≠
∅)) |
| 59 | | 1n0 8526 |
. . . . . . . . . . . . . . . . . . 19
⊢
1o ≠ ∅ |
| 60 | 57, 58, 59 | elimhyp 4591 |
. . . . . . . . . . . . . . . . . 18
⊢ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ≠
∅ |
| 61 | | n0 4353 |
. . . . . . . . . . . . . . . . . 18
⊢
(if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ≠ ∅ ↔
∃𝑦 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) |
| 62 | 60, 61 | mpbi 230 |
. . . . . . . . . . . . . . . . 17
⊢
∃𝑦 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) |
| 63 | | 19.29r 1874 |
. . . . . . . . . . . . . . . . 17
⊢
((∃𝑦 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃𝑦(𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 64 | 62, 63 | mpan 690 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃𝑦(𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 65 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → (𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ↔ ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 66 | 48, 65 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) → (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 67 | 66 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → 𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
| 68 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑛 = 𝑧 → (◡𝑓‘𝑛) = (◡𝑓‘𝑧)) |
| 69 | 68 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑛 = 𝑧 → ((◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅}) ↔ (◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅}))) |
| 70 | 69 | elrab 3692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ↔ (𝑧 ∈ ran 𝑓 ∧ (◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅}))) |
| 71 | 70 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → (◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅})) |
| 72 | 67, 71 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅})) |
| 73 | | eldifsn 4786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅}) ↔ ((◡𝑓‘𝑧) ∈ 𝒫 𝐵 ∧ (◡𝑓‘𝑧) ≠ ∅)) |
| 74 | 72, 73 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → ((◡𝑓‘𝑧) ∈ 𝒫 𝐵 ∧ (◡𝑓‘𝑧) ≠ ∅)) |
| 75 | 74 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (◡𝑓‘𝑧) ≠ ∅) |
| 76 | 75 | iftrued 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) = (◡𝑓‘𝑧)) |
| 77 | 74 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (◡𝑓‘𝑧) ∈ 𝒫 𝐵) |
| 78 | 77 | elpwid 4609 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (◡𝑓‘𝑧) ⊆ 𝐵) |
| 79 | 76, 78 | eqsstrd 4018 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ⊆ 𝐵) |
| 80 | 79 | sseld 3982 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → 𝑦 ∈ 𝐵)) |
| 81 | 80 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → 𝑦 ∈ 𝐵)))) |
| 82 | 81 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → 𝑦 ∈ 𝐵)))) |
| 83 | 82 | exp4a 431 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → (𝑥 ∈ 𝐴 → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → 𝑦 ∈ 𝐵))))) |
| 84 | 83 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → (𝑥 ∈ 𝐴 → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵))))) |
| 85 | 84 | imp31 417 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) ∧ 𝑥 ∈ 𝐴) → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵))) |
| 86 | 85 | ralimdva 3167 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) → (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → ∀𝑥 ∈ 𝐴 (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵))) |
| 87 | 86 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → ∀𝑥 ∈ 𝐴 (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵)) |
| 88 | 87 | an32s 652 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) → ∀𝑥 ∈ 𝐴 (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵)) |
| 89 | | rmoim 3746 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 ∈
𝐴 (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 91 | 90 | expimpd 453 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → ((𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 92 | 91 | exlimdv 1933 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → (∃𝑦(𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 93 | 64, 92 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 94 | 93 | impr 454 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
| 95 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥𝑤 |
| 96 | | nfmpt1 5250 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
| 97 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥𝑧 |
| 98 | 95, 96, 97 | nfbr 5190 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 |
| 99 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
| 100 | | breq1 5146 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑥 → (𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ 𝑥(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧)) |
| 101 | | df-br 5144 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ 〈𝑥, 𝑧〉 ∈ (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 102 | | df-mpt 5226 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})} |
| 103 | 102 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑥, 𝑧〉 ∈ (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) ↔ 〈𝑥, 𝑧〉 ∈ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})}) |
| 104 | | opabidw 5529 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑥, 𝑧〉 ∈ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})} ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 105 | 101, 103,
104 | 3bitri 297 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 106 | 100, 105 | bitrdi 287 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑥 → (𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}))) |
| 107 | 98, 99, 106 | cbvmow 2603 |
. . . . . . . . . . . . . . 15
⊢
(∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 108 | | df-rmo 3380 |
. . . . . . . . . . . . . . 15
⊢
(∃*𝑥 ∈
𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
| 109 | 107, 108 | bitr4i 278 |
. . . . . . . . . . . . . 14
⊢
(∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
| 110 | 94, 109 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → ∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧) |
| 111 | 110 | alrimiv 1927 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → ∀𝑧∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧) |
| 112 | | dff12 6803 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴–1-1→ω ↔ ((𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴⟶ω ∧ ∀𝑧∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧)) |
| 113 | 56, 111, 112 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴–1-1→ω) |
| 114 | | f1domg 9012 |
. . . . . . . . . . 11
⊢ (ω
∈ V → ((𝑥 ∈
𝐴 ↦ ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴–1-1→ω → 𝐴 ≼ ω)) |
| 115 | 2, 113, 114 | mpsyl 68 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → 𝐴 ≼ ω) |
| 116 | 115 | ex 412 |
. . . . . . . . 9
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → ((∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)) |
| 117 | | difeq1 4119 |
. . . . . . . . . . . . 13
⊢
((topGen‘𝑏) =
𝐽 →
((topGen‘𝑏) ∖
{∅}) = (𝐽 ∖
{∅})) |
| 118 | 117 | eleq2d 2827 |
. . . . . . . . . . . 12
⊢
((topGen‘𝑏) =
𝐽 → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ↔ 𝐵 ∈ (𝐽 ∖ {∅}))) |
| 119 | 118 | ralbidv 3178 |
. . . . . . . . . . 11
⊢
((topGen‘𝑏) =
𝐽 → (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}))) |
| 120 | 119 | anbi1d 631 |
. . . . . . . . . 10
⊢
((topGen‘𝑏) =
𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵))) |
| 121 | 120 | imbi1d 341 |
. . . . . . . . 9
⊢
((topGen‘𝑏) =
𝐽 → (((∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω) ↔ ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω))) |
| 122 | 116, 121 | syl5ibcom 245 |
. . . . . . . 8
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → ((topGen‘𝑏) = 𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω))) |
| 123 | 122 | ex 412 |
. . . . . . 7
⊢ (𝑏 ∈ TopBases → (𝑓:𝑏–1-1→ω → ((topGen‘𝑏) = 𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)))) |
| 124 | 123 | exlimdv 1933 |
. . . . . 6
⊢ (𝑏 ∈ TopBases →
(∃𝑓 𝑓:𝑏–1-1→ω → ((topGen‘𝑏) = 𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)))) |
| 125 | 3, 124 | biimtrid 242 |
. . . . 5
⊢ (𝑏 ∈ TopBases → (𝑏 ≼ ω →
((topGen‘𝑏) = 𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)))) |
| 126 | 125 | impd 410 |
. . . 4
⊢ (𝑏 ∈ TopBases → ((𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽) → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω))) |
| 127 | 126 | rexlimiv 3148 |
. . 3
⊢
(∃𝑏 ∈
TopBases (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝐽) → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)) |
| 128 | 1, 127 | sylbi 217 |
. 2
⊢ (𝐽 ∈ 2ndω
→ ((∀𝑥 ∈
𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)) |
| 129 | 128 | 3impib 1117 |
1
⊢ ((𝐽 ∈ 2ndω
∧ ∀𝑥 ∈
𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω) |