Step | Hyp | Ref
| Expression |
1 | | is2ndc 22597 |
. . 3
⊢ (𝐽 ∈ 2ndω
↔ ∃𝑏 ∈
TopBases (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝐽)) |
2 | | omex 9401 |
. . . . . . 7
⊢ ω
∈ V |
3 | 2 | brdom 8750 |
. . . . . 6
⊢ (𝑏 ≼ ω ↔
∃𝑓 𝑓:𝑏–1-1→ω) |
4 | | ssrab2 4013 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆ ran 𝑓 |
5 | | f1f 6670 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓:𝑏–1-1→ω → 𝑓:𝑏⟶ω) |
6 | 5 | frnd 6608 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓:𝑏–1-1→ω → ran 𝑓 ⊆ ω) |
7 | 6 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → ran 𝑓 ⊆ ω) |
8 | 4, 7 | sstrid 3932 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆
ω) |
9 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆
ω) |
10 | | eldifsn 4720 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ↔
(𝐵 ∈
(topGen‘𝑏) ∧
𝐵 ≠
∅)) |
11 | | n0 4280 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝐵) |
12 | | tg2 22115 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐵 ∈ (topGen‘𝑏) ∧ 𝑦 ∈ 𝐵) → ∃𝑧 ∈ 𝑏 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵)) |
13 | | omsson 7716 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ω
⊆ On |
14 | 8, 13 | sstrdi 3933 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆
On) |
15 | 14 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆
On) |
16 | | f1fn 6671 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓:𝑏–1-1→ω → 𝑓 Fn 𝑏) |
17 | 16 | ad3antlr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑓 Fn 𝑏) |
18 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ∈ 𝑏) |
19 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 Fn 𝑏 ∧ 𝑧 ∈ 𝑏) → (𝑓‘𝑧) ∈ ran 𝑓) |
20 | 17, 18, 19 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → (𝑓‘𝑧) ∈ ran 𝑓) |
21 | | f1f1orn 6727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓:𝑏–1-1→ω → 𝑓:𝑏–1-1-onto→ran
𝑓) |
22 | 21 | ad3antlr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑓:𝑏–1-1-onto→ran
𝑓) |
23 | | f1ocnvfv1 7148 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓:𝑏–1-1-onto→ran
𝑓 ∧ 𝑧 ∈ 𝑏) → (◡𝑓‘(𝑓‘𝑧)) = 𝑧) |
24 | 22, 18, 23 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → (◡𝑓‘(𝑓‘𝑧)) = 𝑧) |
25 | | simprrr 779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ⊆ 𝐵) |
26 | | velpw 4538 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ 𝒫 𝐵 ↔ 𝑧 ⊆ 𝐵) |
27 | 25, 26 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ∈ 𝒫 𝐵) |
28 | | simprrl 778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑦 ∈ 𝑧) |
29 | 28 | ne0d 4269 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ≠ ∅) |
30 | | eldifsn 4720 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ (𝒫 𝐵 ∖ {∅}) ↔
(𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ≠ ∅)) |
31 | 27, 29, 30 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → 𝑧 ∈ (𝒫 𝐵 ∖ {∅})) |
32 | 24, 31 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → (◡𝑓‘(𝑓‘𝑧)) ∈ (𝒫 𝐵 ∖ {∅})) |
33 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = (𝑓‘𝑧) → (◡𝑓‘𝑛) = (◡𝑓‘(𝑓‘𝑧))) |
34 | 33 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = (𝑓‘𝑧) → ((◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅}) ↔ (◡𝑓‘(𝑓‘𝑧)) ∈ (𝒫 𝐵 ∖ {∅}))) |
35 | 34 | rspcev 3561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓‘𝑧) ∈ ran 𝑓 ∧ (◡𝑓‘(𝑓‘𝑧)) ∈ (𝒫 𝐵 ∖ {∅})) → ∃𝑛 ∈ ran 𝑓(◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})) |
36 | 20, 32, 35 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → ∃𝑛 ∈ ran 𝑓(◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})) |
37 | | rabn0 4319 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ({𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ≠ ∅ ↔
∃𝑛 ∈ ran 𝑓(◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})) |
38 | 36, 37 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ≠
∅) |
39 | | onint 7640 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (({𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ⊆ On ∧ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ≠ ∅) →
∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
40 | 15, 38, 39 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ 𝑏 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵))) → ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
41 | 40 | rexlimdvaa 3214 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → (∃𝑧 ∈ 𝑏 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵) → ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
42 | 12, 41 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ∈ (topGen‘𝑏) ∧ 𝑦 ∈ 𝐵) → ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
43 | 42 | expdimp 453 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ (topGen‘𝑏)) → (𝑦 ∈ 𝐵 → ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
44 | 43 | exlimdv 1936 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ (topGen‘𝑏)) → (∃𝑦 𝑦 ∈ 𝐵 → ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
45 | 11, 44 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ (topGen‘𝑏)) → (𝐵 ≠ ∅ → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
46 | 45 | expimpd 454 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ∈ (topGen‘𝑏) ∧ 𝐵 ≠ ∅) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
47 | 10, 46 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
48 | 47 | impr 455 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
49 | 9, 48 | sseldd 3922 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω) |
50 | 49 | expr 457 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑥 ∈ 𝐴) → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω)) |
51 | 50 | ralimdva 3108 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → ∀𝑥 ∈ 𝐴 ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω)) |
52 | 51 | imp 407 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → ∀𝑥 ∈ 𝐴 ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω) |
53 | 52 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈
ω) |
54 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) = (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
55 | 54 | fmpt 6984 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝐴 ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ ω ↔
(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴⟶ω) |
56 | 53, 55 | sylib 217 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴⟶ω) |
57 | | neeq1 3006 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝑓‘𝑧) = if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → ((◡𝑓‘𝑧) ≠ ∅ ↔ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ≠
∅)) |
58 | | neeq1 3006 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1o = if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → (1o ≠
∅ ↔ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ≠
∅)) |
59 | | 1n0 8318 |
. . . . . . . . . . . . . . . . . . 19
⊢
1o ≠ ∅ |
60 | 57, 58, 59 | elimhyp 4524 |
. . . . . . . . . . . . . . . . . 18
⊢ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ≠
∅ |
61 | | n0 4280 |
. . . . . . . . . . . . . . . . . 18
⊢
(if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ≠ ∅ ↔
∃𝑦 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) |
62 | 60, 61 | mpbi 229 |
. . . . . . . . . . . . . . . . 17
⊢
∃𝑦 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) |
63 | | 19.29r 1877 |
. . . . . . . . . . . . . . . . 17
⊢
((∃𝑦 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃𝑦(𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
64 | 62, 63 | mpan 687 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃𝑦(𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
65 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → (𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ↔ ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
66 | 48, 65 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) → (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
67 | 66 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → 𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
68 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑛 = 𝑧 → (◡𝑓‘𝑛) = (◡𝑓‘𝑧)) |
69 | 68 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑛 = 𝑧 → ((◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅}) ↔ (◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅}))) |
70 | 69 | elrab 3624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ↔ (𝑧 ∈ ran 𝑓 ∧ (◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅}))) |
71 | 70 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → (◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅})) |
72 | 67, 71 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅})) |
73 | | eldifsn 4720 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑓‘𝑧) ∈ (𝒫 𝐵 ∖ {∅}) ↔ ((◡𝑓‘𝑧) ∈ 𝒫 𝐵 ∧ (◡𝑓‘𝑧) ≠ ∅)) |
74 | 72, 73 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → ((◡𝑓‘𝑧) ∈ 𝒫 𝐵 ∧ (◡𝑓‘𝑧) ≠ ∅)) |
75 | 74 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (◡𝑓‘𝑧) ≠ ∅) |
76 | 75 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) = (◡𝑓‘𝑧)) |
77 | 74 | simpld 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (◡𝑓‘𝑧) ∈ 𝒫 𝐵) |
78 | 77 | elpwid 4544 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (◡𝑓‘𝑧) ⊆ 𝐵) |
79 | 76, 78 | eqsstrd 3959 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ⊆ 𝐵) |
80 | 79 | sseld 3920 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}))) ∧ 𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → 𝑦 ∈ 𝐵)) |
81 | 80 | exp31 420 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → 𝑦 ∈ 𝐵)))) |
82 | 81 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → 𝑦 ∈ 𝐵)))) |
83 | 82 | exp4a 432 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → (𝑥 ∈ 𝐴 → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → 𝑦 ∈ 𝐵))))) |
84 | 83 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → (𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) → (𝑥 ∈ 𝐴 → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵))))) |
85 | 84 | imp31 418 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) ∧ 𝑥 ∈ 𝐴) → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → (𝑧 = ∩
{𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵))) |
86 | 85 | ralimdva 3108 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) → (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) → ∀𝑥 ∈ 𝐴 (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵))) |
87 | 86 | imp 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → ∀𝑥 ∈ 𝐴 (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵)) |
88 | 87 | an32s 649 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) → ∀𝑥 ∈ 𝐴 (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵)) |
89 | | rmoim 3675 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 ∈
𝐴 (𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} → 𝑦 ∈ 𝐵) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) ∧ 𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o)) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
91 | 90 | expimpd 454 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → ((𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
92 | 91 | exlimdv 1936 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → (∃𝑦(𝑦 ∈ if((◡𝑓‘𝑧) ≠ ∅, (◡𝑓‘𝑧), 1o) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
93 | 64, 92 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅})) → (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
94 | 93 | impr 455 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
95 | | nfcv 2907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥𝑤 |
96 | | nfmpt1 5182 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
97 | | nfcv 2907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥𝑧 |
98 | 95, 96, 97 | nfbr 5121 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 |
99 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
100 | | breq1 5077 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑥 → (𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ 𝑥(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧)) |
101 | | df-br 5075 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ 〈𝑥, 𝑧〉 ∈ (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
102 | | df-mpt 5158 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})} |
103 | 102 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑥, 𝑧〉 ∈ (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) ↔ 〈𝑥, 𝑧〉 ∈ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})}) |
104 | | opabidw 5437 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑥, 𝑧〉 ∈ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})} ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
105 | 101, 103,
104 | 3bitri 297 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
106 | 100, 105 | bitrdi 287 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑥 → (𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}))) |
107 | 98, 99, 106 | cbvmow 2603 |
. . . . . . . . . . . . . . 15
⊢
(∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
108 | | df-rmo 3071 |
. . . . . . . . . . . . . . 15
⊢
(∃*𝑥 ∈
𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})} ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})) |
109 | 107, 108 | bitr4i 277 |
. . . . . . . . . . . . . 14
⊢
(∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧 ↔ ∃*𝑥 ∈ 𝐴 𝑧 = ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}) |
110 | 94, 109 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → ∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧) |
111 | 110 | alrimiv 1930 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → ∀𝑧∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧) |
112 | | dff12 6669 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴–1-1→ω ↔ ((𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴⟶ω ∧ ∀𝑧∃*𝑤 𝑤(𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})})𝑧)) |
113 | 56, 111, 112 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ∩ {𝑛 ∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴–1-1→ω) |
114 | | f1domg 8760 |
. . . . . . . . . . 11
⊢ (ω
∈ V → ((𝑥 ∈
𝐴 ↦ ∩ {𝑛
∈ ran 𝑓 ∣ (◡𝑓‘𝑛) ∈ (𝒫 𝐵 ∖ {∅})}):𝐴–1-1→ω → 𝐴 ≼ ω)) |
115 | 2, 113, 114 | mpsyl 68 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) → 𝐴 ≼ ω) |
116 | 115 | ex 413 |
. . . . . . . . 9
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → ((∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)) |
117 | | difeq1 4050 |
. . . . . . . . . . . . 13
⊢
((topGen‘𝑏) =
𝐽 →
((topGen‘𝑏) ∖
{∅}) = (𝐽 ∖
{∅})) |
118 | 117 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢
((topGen‘𝑏) =
𝐽 → (𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ↔ 𝐵 ∈ (𝐽 ∖ {∅}))) |
119 | 118 | ralbidv 3112 |
. . . . . . . . . . 11
⊢
((topGen‘𝑏) =
𝐽 → (∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}))) |
120 | 119 | anbi1d 630 |
. . . . . . . . . 10
⊢
((topGen‘𝑏) =
𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵))) |
121 | 120 | imbi1d 342 |
. . . . . . . . 9
⊢
((topGen‘𝑏) =
𝐽 → (((∀𝑥 ∈ 𝐴 𝐵 ∈ ((topGen‘𝑏) ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω) ↔ ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω))) |
122 | 116, 121 | syl5ibcom 244 |
. . . . . . . 8
⊢ ((𝑏 ∈ TopBases ∧ 𝑓:𝑏–1-1→ω) → ((topGen‘𝑏) = 𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω))) |
123 | 122 | ex 413 |
. . . . . . 7
⊢ (𝑏 ∈ TopBases → (𝑓:𝑏–1-1→ω → ((topGen‘𝑏) = 𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)))) |
124 | 123 | exlimdv 1936 |
. . . . . 6
⊢ (𝑏 ∈ TopBases →
(∃𝑓 𝑓:𝑏–1-1→ω → ((topGen‘𝑏) = 𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)))) |
125 | 3, 124 | syl5bi 241 |
. . . . 5
⊢ (𝑏 ∈ TopBases → (𝑏 ≼ ω →
((topGen‘𝑏) = 𝐽 → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)))) |
126 | 125 | impd 411 |
. . . 4
⊢ (𝑏 ∈ TopBases → ((𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽) → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω))) |
127 | 126 | rexlimiv 3209 |
. . 3
⊢
(∃𝑏 ∈
TopBases (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝐽) → ((∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)) |
128 | 1, 127 | sylbi 216 |
. 2
⊢ (𝐽 ∈ 2ndω
→ ((∀𝑥 ∈
𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω)) |
129 | 128 | 3impib 1115 |
1
⊢ ((𝐽 ∈ 2ndω
∧ ∀𝑥 ∈
𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω) |