Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nul | Structured version Visualization version GIF version |
Description: Two formulations of the axiom of the empty set ax-nul 5225. Proposal: place it right before ax-nul 5225. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nul | ⊢ (∅ ∈ V ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3435 | . 2 ⊢ (∅ ∈ V ↔ ∃𝑥 𝑥 = ∅) | |
2 | eq0 4274 | . . 3 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
3 | 2 | exbii 1851 | . 2 ⊢ (∃𝑥 𝑥 = ∅ ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
4 | 1, 3 | bitri 274 | 1 ⊢ (∅ ∈ V ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |