Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nul Structured version   Visualization version   GIF version

Theorem bj-nul 35154
Description: Two formulations of the axiom of the empty set ax-nul 5225. Proposal: place it right before ax-nul 5225. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nul (∅ ∈ V ↔ ∃𝑥𝑦 ¬ 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-nul
StepHypRef Expression
1 isset 3435 . 2 (∅ ∈ V ↔ ∃𝑥 𝑥 = ∅)
2 eq0 4274 . . 3 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
32exbii 1851 . 2 (∃𝑥 𝑥 = ∅ ↔ ∃𝑥𝑦 ¬ 𝑦𝑥)
41, 3bitri 274 1 (∅ ∈ V ↔ ∃𝑥𝑦 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator