| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nul | Structured version Visualization version GIF version | ||
| Description: Two formulations of the axiom of the empty set ax-nul 5273. Proposal: place it right before ax-nul 5273. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nul | ⊢ (∅ ∈ V ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 3471 | . 2 ⊢ (∅ ∈ V ↔ ∃𝑥 𝑥 = ∅) | |
| 2 | eq0 4323 | . . 3 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
| 3 | 2 | exbii 1847 | . 2 ⊢ (∃𝑥 𝑥 = ∅ ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∅ ∈ V ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3457 ∅c0 4306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-dif 3927 df-nul 4307 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |