Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nuliota | Structured version Visualization version GIF version |
Description: Definition of the empty set using the definite description binder. See also bj-nuliotaALT 34756. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nuliota | ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5178 | . . . 4 ⊢ ∅ ∈ V | |
2 | 1 | eueqi 3624 | . . . . 5 ⊢ ∃!𝑥 𝑥 = ∅ |
3 | eq0 4243 | . . . . . 6 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
4 | 3 | eubii 2605 | . . . . 5 ⊢ (∃!𝑥 𝑥 = ∅ ↔ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
5 | 2, 4 | mpbi 233 | . . . 4 ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
6 | eleq2 2841 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ∅)) | |
7 | 6 | notbid 322 | . . . . . 6 ⊢ (𝑥 = ∅ → (¬ 𝑦 ∈ 𝑥 ↔ ¬ 𝑦 ∈ ∅)) |
8 | 7 | albidv 1922 | . . . . 5 ⊢ (𝑥 = ∅ → (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦 ¬ 𝑦 ∈ ∅)) |
9 | 8 | iota2 6325 | . . . 4 ⊢ ((∅ ∈ V ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) → (∀𝑦 ¬ 𝑦 ∈ ∅ ↔ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) = ∅)) |
10 | 1, 5, 9 | mp2an 692 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ ∅ ↔ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) = ∅) |
11 | noel 4231 | . . 3 ⊢ ¬ 𝑦 ∈ ∅ | |
12 | 10, 11 | mpgbi 1801 | . 2 ⊢ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) = ∅ |
13 | 12 | eqcomi 2768 | 1 ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∀wal 1537 = wceq 1539 ∈ wcel 2112 ∃!weu 2588 Vcvv 3410 ∅c0 4226 ℩cio 6293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-nul 5177 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-sn 4524 df-pr 4526 df-uni 4800 df-iota 6295 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |