![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nuliota | Structured version Visualization version GIF version |
Description: Definition of the empty set using the definite description binder. See also bj-nuliotaALT 35939. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nuliota | ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5308 | . . . 4 ⊢ ∅ ∈ V | |
2 | 1 | eueqi 3706 | . . . . 5 ⊢ ∃!𝑥 𝑥 = ∅ |
3 | eq0 4344 | . . . . . 6 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
4 | 3 | eubii 2580 | . . . . 5 ⊢ (∃!𝑥 𝑥 = ∅ ↔ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
5 | 2, 4 | mpbi 229 | . . . 4 ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
6 | eleq2 2823 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ∅)) | |
7 | 6 | notbid 318 | . . . . . 6 ⊢ (𝑥 = ∅ → (¬ 𝑦 ∈ 𝑥 ↔ ¬ 𝑦 ∈ ∅)) |
8 | 7 | albidv 1924 | . . . . 5 ⊢ (𝑥 = ∅ → (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦 ¬ 𝑦 ∈ ∅)) |
9 | 8 | iota2 6533 | . . . 4 ⊢ ((∅ ∈ V ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) → (∀𝑦 ¬ 𝑦 ∈ ∅ ↔ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) = ∅)) |
10 | 1, 5, 9 | mp2an 691 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ ∅ ↔ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) = ∅) |
11 | noel 4331 | . . 3 ⊢ ¬ 𝑦 ∈ ∅ | |
12 | 10, 11 | mpgbi 1801 | . 2 ⊢ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) = ∅ |
13 | 12 | eqcomi 2742 | 1 ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∃!weu 2563 Vcvv 3475 ∅c0 4323 ℩cio 6494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-pr 4632 df-uni 4910 df-iota 6496 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |