![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nuliota | Structured version Visualization version GIF version |
Description: Definition of the empty set using the definite description binder. See also bj-nuliotaALT 37024. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nuliota | ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . . 4 ⊢ ∅ ∈ V | |
2 | 1 | eueqi 3731 | . . . . 5 ⊢ ∃!𝑥 𝑥 = ∅ |
3 | eq0 4373 | . . . . . 6 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
4 | 3 | eubii 2588 | . . . . 5 ⊢ (∃!𝑥 𝑥 = ∅ ↔ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
5 | 2, 4 | mpbi 230 | . . . 4 ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
6 | eleq2 2833 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ∅)) | |
7 | 6 | notbid 318 | . . . . . 6 ⊢ (𝑥 = ∅ → (¬ 𝑦 ∈ 𝑥 ↔ ¬ 𝑦 ∈ ∅)) |
8 | 7 | albidv 1919 | . . . . 5 ⊢ (𝑥 = ∅ → (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦 ¬ 𝑦 ∈ ∅)) |
9 | 8 | iota2 6562 | . . . 4 ⊢ ((∅ ∈ V ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) → (∀𝑦 ¬ 𝑦 ∈ ∅ ↔ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) = ∅)) |
10 | 1, 5, 9 | mp2an 691 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ ∅ ↔ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) = ∅) |
11 | noel 4360 | . . 3 ⊢ ¬ 𝑦 ∈ ∅ | |
12 | 10, 11 | mpgbi 1796 | . 2 ⊢ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) = ∅ |
13 | 12 | eqcomi 2749 | 1 ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 Vcvv 3488 ∅c0 4352 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |