Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nuliota Structured version   Visualization version   GIF version

Theorem bj-nuliota 37040
Description: Definition of the empty set using the definite description binder. See also bj-nuliotaALT 37041. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nuliota ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-nuliota
StepHypRef Expression
1 0ex 5313 . . . 4 ∅ ∈ V
21eueqi 3718 . . . . 5 ∃!𝑥 𝑥 = ∅
3 eq0 4356 . . . . . 6 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
43eubii 2583 . . . . 5 (∃!𝑥 𝑥 = ∅ ↔ ∃!𝑥𝑦 ¬ 𝑦𝑥)
52, 4mpbi 230 . . . 4 ∃!𝑥𝑦 ¬ 𝑦𝑥
6 eleq2 2828 . . . . . . 7 (𝑥 = ∅ → (𝑦𝑥𝑦 ∈ ∅))
76notbid 318 . . . . . 6 (𝑥 = ∅ → (¬ 𝑦𝑥 ↔ ¬ 𝑦 ∈ ∅))
87albidv 1918 . . . . 5 (𝑥 = ∅ → (∀𝑦 ¬ 𝑦𝑥 ↔ ∀𝑦 ¬ 𝑦 ∈ ∅))
98iota2 6552 . . . 4 ((∅ ∈ V ∧ ∃!𝑥𝑦 ¬ 𝑦𝑥) → (∀𝑦 ¬ 𝑦 ∈ ∅ ↔ (℩𝑥𝑦 ¬ 𝑦𝑥) = ∅))
101, 5, 9mp2an 692 . . 3 (∀𝑦 ¬ 𝑦 ∈ ∅ ↔ (℩𝑥𝑦 ¬ 𝑦𝑥) = ∅)
11 noel 4344 . . 3 ¬ 𝑦 ∈ ∅
1210, 11mpgbi 1795 . 2 (℩𝑥𝑦 ¬ 𝑦𝑥) = ∅
1312eqcomi 2744 1 ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535   = wceq 1537  wcel 2106  ∃!weu 2566  Vcvv 3478  c0 4339  cio 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-sn 4632  df-pr 4634  df-uni 4913  df-iota 6516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator