MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0 Structured version   Visualization version   GIF version

Theorem eq0 4325
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2157, ax-12 2177. (Revised by GG and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2110, df-clel 2809. (Revised by GG, 6-Sep-2024.)
Assertion
Ref Expression
eq0 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfnul4 4310 . . 3 ∅ = {𝑦 ∣ ⊥}
21eqeq2i 2748 . 2 (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥})
3 dfcleq 2728 . . 3 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}))
4 df-clab 2714 . . . . . . 7 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥)
5 sbv 2088 . . . . . . 7 ([𝑥 / 𝑦]⊥ ↔ ⊥)
64, 5bitri 275 . . . . . 6 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥)
76bibi2i 337 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥𝐴 ↔ ⊥))
8 nbfal 1555 . . . . 5 𝑥𝐴 ↔ (𝑥𝐴 ↔ ⊥))
97, 8bitr4i 278 . . . 4 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ¬ 𝑥𝐴)
109albii 1819 . . 3 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥𝐴)
113, 10bitri 275 . 2 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥𝐴)
122, 11bitri 275 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538   = wceq 1540  wfal 1552  [wsb 2064  wcel 2108  {cab 2713  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-dif 3929  df-nul 4309
This theorem is referenced by:  neq0  4327  nel0  4329  0el  4338  ssdif0  4341  difin0ss  4348  inssdif0  4349  disjiun  5107  0ex  5277  reldm0  5907  iresn0n0  6041  uzwo  12925  hashgt0elex  14417  nrhmzr  20495  zrninitoringc  20634  hausdiag  23581  rnelfmlem  23888  elons2  28198  prv0  35398  wzel  35788  knoppndv  36498  bj-nul  37020  bj-nuliota  37021  bj-nuliotaALT  37022  nninfnub  37721  prtlem14  38838  orddif0suc  43239
  Copyright terms: Public domain W3C validator