| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq0 | Structured version Visualization version GIF version | ||
| Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2162, ax-12 2182. (Revised by GG and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2115, df-clel 2808. (Revised by GG, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| eq0 | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnul4 4284 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 2 | 1 | eqeq2i 2746 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 3 | biidd 262 | . . . 4 ⊢ (𝑦 = 𝑥 → (⊥ ↔ ⊥)) | |
| 4 | 3 | eqabbw 2806 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
| 5 | nbfal 1556 | . . . 4 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 6 | 5 | albii 1820 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
| 7 | 4, 6 | bitr4i 278 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 8 | 2, 7 | bitri 275 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ⊥wfal 1553 ∈ wcel 2113 {cab 2711 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: neq0 4301 nel0 4303 0el 4312 ssdif0 4315 difin0ss 4322 inssdif0 4323 disjiun 5081 0ex 5247 reldm0 5872 iresn0n0 6007 uzwo 12811 hashgt0elex 14310 nrhmzr 20454 zrninitoringc 20593 hausdiag 23561 rnelfmlem 23868 elons2 28196 prv0 35495 wzel 35887 knoppndv 36599 bj-nul 37121 bj-nuliota 37122 bj-nuliotaALT 37123 nninfnub 37812 prtlem14 38994 orddif0suc 43386 |
| Copyright terms: Public domain | W3C validator |