| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq0 | Structured version Visualization version GIF version | ||
| Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2160, ax-12 2180. (Revised by GG and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2113, df-clel 2806. (Revised by GG, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| eq0 | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnul4 4285 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 2 | 1 | eqeq2i 2744 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 3 | dfcleq 2724 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
| 4 | df-clab 2710 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 5 | sbv 2091 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
| 6 | 4, 5 | bitri 275 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
| 7 | 6 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 8 | nbfal 1556 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 9 | 7, 8 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ¬ 𝑥 ∈ 𝐴) |
| 10 | 9 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 11 | 3, 10 | bitri 275 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 12 | 2, 11 | bitri 275 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ⊥wfal 1553 [wsb 2067 ∈ wcel 2111 {cab 2709 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: neq0 4302 nel0 4304 0el 4313 ssdif0 4316 difin0ss 4323 inssdif0 4324 disjiun 5079 0ex 5245 reldm0 5868 iresn0n0 6003 uzwo 12809 hashgt0elex 14308 nrhmzr 20453 zrninitoringc 20592 hausdiag 23561 rnelfmlem 23868 elons2 28196 prv0 35472 wzel 35864 knoppndv 36574 bj-nul 37096 bj-nuliota 37097 bj-nuliotaALT 37098 nninfnub 37797 prtlem14 38919 orddif0suc 43307 |
| Copyright terms: Public domain | W3C validator |