| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq0 | Structured version Visualization version GIF version | ||
| Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2158, ax-12 2178. (Revised by GG and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2111, df-clel 2804. (Revised by GG, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| eq0 | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnul4 4301 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 2 | 1 | eqeq2i 2743 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 3 | dfcleq 2723 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
| 4 | df-clab 2709 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 5 | sbv 2089 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
| 6 | 4, 5 | bitri 275 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
| 7 | 6 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 8 | nbfal 1555 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 9 | 7, 8 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ¬ 𝑥 ∈ 𝐴) |
| 10 | 9 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 11 | 3, 10 | bitri 275 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 12 | 2, 11 | bitri 275 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ⊥wfal 1552 [wsb 2065 ∈ wcel 2109 {cab 2708 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: neq0 4318 nel0 4320 0el 4329 ssdif0 4332 difin0ss 4339 inssdif0 4340 disjiun 5098 0ex 5265 reldm0 5894 iresn0n0 6028 uzwo 12877 hashgt0elex 14373 nrhmzr 20453 zrninitoringc 20592 hausdiag 23539 rnelfmlem 23846 elons2 28166 prv0 35424 wzel 35819 knoppndv 36529 bj-nul 37051 bj-nuliota 37052 bj-nuliotaALT 37053 nninfnub 37752 prtlem14 38874 orddif0suc 43264 |
| Copyright terms: Public domain | W3C validator |