MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0 Structured version   Visualization version   GIF version

Theorem eq0 4277
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2154, ax-12 2171. (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2108, df-clel 2816. (Revised by Gino Giotto, 6-Sep-2024.)
Assertion
Ref Expression
eq0 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfnul4 4258 . . 3 ∅ = {𝑦 ∣ ⊥}
21eqeq2i 2751 . 2 (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥})
3 dfcleq 2731 . . 3 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}))
4 df-clab 2716 . . . . . . 7 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥)
5 sbv 2091 . . . . . . 7 ([𝑥 / 𝑦]⊥ ↔ ⊥)
64, 5bitri 274 . . . . . 6 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥)
76bibi2i 338 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥𝐴 ↔ ⊥))
8 nbfal 1554 . . . . 5 𝑥𝐴 ↔ (𝑥𝐴 ↔ ⊥))
97, 8bitr4i 277 . . . 4 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ¬ 𝑥𝐴)
109albii 1822 . . 3 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥𝐴)
113, 10bitri 274 . 2 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥𝐴)
122, 11bitri 274 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wfal 1551  [wsb 2067  wcel 2106  {cab 2715  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-dif 3890  df-nul 4257
This theorem is referenced by:  neq0  4279  nel0  4284  0el  4294  ssdif0  4297  difin0ss  4302  inssdif0  4303  ralf0OLD  4448  disjiun  5061  0ex  5231  reldm0  5837  iresn0n0  5963  uzwo  12651  hashgt0elex  14116  hausdiag  22796  rnelfmlem  23103  prv0  33392  wzel  33818  knoppndv  34714  bj-nul  35227  bj-nuliota  35228  bj-nuliotaALT  35229  nninfnub  35909  prtlem14  36888  nrhmzr  45431  zrninitoringc  45629
  Copyright terms: Public domain W3C validator