MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0 Structured version   Visualization version   GIF version

Theorem eq0 4303
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2158, ax-12 2178. (Revised by GG and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2111, df-clel 2803. (Revised by GG, 6-Sep-2024.)
Assertion
Ref Expression
eq0 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfnul4 4288 . . 3 ∅ = {𝑦 ∣ ⊥}
21eqeq2i 2742 . 2 (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥})
3 dfcleq 2722 . . 3 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}))
4 df-clab 2708 . . . . . . 7 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥)
5 sbv 2089 . . . . . . 7 ([𝑥 / 𝑦]⊥ ↔ ⊥)
64, 5bitri 275 . . . . . 6 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥)
76bibi2i 337 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥𝐴 ↔ ⊥))
8 nbfal 1555 . . . . 5 𝑥𝐴 ↔ (𝑥𝐴 ↔ ⊥))
97, 8bitr4i 278 . . . 4 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ¬ 𝑥𝐴)
109albii 1819 . . 3 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥𝐴)
113, 10bitri 275 . 2 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥𝐴)
122, 11bitri 275 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538   = wceq 1540  wfal 1552  [wsb 2065  wcel 2109  {cab 2707  c0 4286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-dif 3908  df-nul 4287
This theorem is referenced by:  neq0  4305  nel0  4307  0el  4316  ssdif0  4319  difin0ss  4326  inssdif0  4327  disjiun  5083  0ex  5249  reldm0  5874  iresn0n0  6009  uzwo  12830  hashgt0elex  14326  nrhmzr  20440  zrninitoringc  20579  hausdiag  23548  rnelfmlem  23855  elons2  28182  prv0  35405  wzel  35800  knoppndv  36510  bj-nul  37032  bj-nuliota  37033  bj-nuliotaALT  37034  nninfnub  37733  prtlem14  38855  orddif0suc  43244
  Copyright terms: Public domain W3C validator