MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0 Structured version   Visualization version   GIF version

Theorem eq0 4274
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2156, ax-12 2173. (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2110, df-clel 2817. (Revised by Gino Giotto, 6-Sep-2024.)
Assertion
Ref Expression
eq0 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfnul4 4255 . . 3 ∅ = {𝑦 ∣ ⊥}
21eqeq2i 2751 . 2 (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥})
3 dfcleq 2731 . . 3 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}))
4 df-clab 2716 . . . . . . 7 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥)
5 sbv 2092 . . . . . . 7 ([𝑥 / 𝑦]⊥ ↔ ⊥)
64, 5bitri 274 . . . . . 6 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥)
76bibi2i 337 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥𝐴 ↔ ⊥))
8 nbfal 1554 . . . . 5 𝑥𝐴 ↔ (𝑥𝐴 ↔ ⊥))
97, 8bitr4i 277 . . . 4 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ¬ 𝑥𝐴)
109albii 1823 . . 3 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥𝐴)
113, 10bitri 274 . 2 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥𝐴)
122, 11bitri 274 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wfal 1551  [wsb 2068  wcel 2108  {cab 2715  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-dif 3886  df-nul 4254
This theorem is referenced by:  neq0  4276  nel0  4281  0el  4291  ssdif0  4294  difin0ss  4299  inssdif0  4300  ralf0OLD  4445  disjiun  5057  0ex  5226  reldm0  5826  iresn0n0  5952  uzwo  12580  hashgt0elex  14044  hausdiag  22704  rnelfmlem  23011  prv0  33292  wzel  33745  knoppndv  34641  bj-nul  35154  bj-nuliota  35155  bj-nuliotaALT  35156  nninfnub  35836  prtlem14  36815  nrhmzr  45319  zrninitoringc  45517
  Copyright terms: Public domain W3C validator