MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0 Structured version   Visualization version   GIF version

Theorem eq0 4299
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2162, ax-12 2182. (Revised by GG and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2115, df-clel 2808. (Revised by GG, 6-Sep-2024.)
Assertion
Ref Expression
eq0 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfnul4 4284 . . 3 ∅ = {𝑦 ∣ ⊥}
21eqeq2i 2746 . 2 (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥})
3 biidd 262 . . . 4 (𝑦 = 𝑥 → (⊥ ↔ ⊥))
43eqabbw 2806 . . 3 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥𝐴 ↔ ⊥))
5 nbfal 1556 . . . 4 𝑥𝐴 ↔ (𝑥𝐴 ↔ ⊥))
65albii 1820 . . 3 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴 ↔ ⊥))
74, 6bitr4i 278 . 2 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥𝐴)
82, 7bitri 275 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1539   = wceq 1541  wfal 1553  wcel 2113  {cab 2711  c0 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-dif 3901  df-nul 4283
This theorem is referenced by:  neq0  4301  nel0  4303  0el  4312  ssdif0  4315  difin0ss  4322  inssdif0  4323  disjiun  5081  0ex  5247  reldm0  5872  iresn0n0  6007  uzwo  12811  hashgt0elex  14310  nrhmzr  20454  zrninitoringc  20593  hausdiag  23561  rnelfmlem  23868  elons2  28196  prv0  35495  wzel  35887  knoppndv  36599  bj-nul  37121  bj-nuliota  37122  bj-nuliotaALT  37123  nninfnub  37812  prtlem14  38994  orddif0suc  43386
  Copyright terms: Public domain W3C validator