| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq0 | Structured version Visualization version GIF version | ||
| Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2157, ax-12 2177. (Revised by GG and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2110, df-clel 2809. (Revised by GG, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| eq0 | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnul4 4310 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 2 | 1 | eqeq2i 2748 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 3 | dfcleq 2728 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
| 4 | df-clab 2714 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 5 | sbv 2088 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
| 6 | 4, 5 | bitri 275 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
| 7 | 6 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 8 | nbfal 1555 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 9 | 7, 8 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ¬ 𝑥 ∈ 𝐴) |
| 10 | 9 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 11 | 3, 10 | bitri 275 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 12 | 2, 11 | bitri 275 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ⊥wfal 1552 [wsb 2064 ∈ wcel 2108 {cab 2713 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: neq0 4327 nel0 4329 0el 4338 ssdif0 4341 difin0ss 4348 inssdif0 4349 disjiun 5107 0ex 5277 reldm0 5907 iresn0n0 6041 uzwo 12925 hashgt0elex 14417 nrhmzr 20495 zrninitoringc 20634 hausdiag 23581 rnelfmlem 23888 elons2 28198 prv0 35398 wzel 35788 knoppndv 36498 bj-nul 37020 bj-nuliota 37021 bj-nuliotaALT 37022 nninfnub 37721 prtlem14 38838 orddif0suc 43239 |
| Copyright terms: Public domain | W3C validator |