![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eq0 | Structured version Visualization version GIF version |
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2158, ax-12 2178. (Revised by GG and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2110, df-clel 2819. (Revised by GG, 6-Sep-2024.) |
Ref | Expression |
---|---|
eq0 | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnul4 4354 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
2 | 1 | eqeq2i 2753 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
3 | dfcleq 2733 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
4 | df-clab 2718 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
5 | sbv 2088 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
6 | 4, 5 | bitri 275 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
7 | 6 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
8 | nbfal 1552 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
9 | 7, 8 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ¬ 𝑥 ∈ 𝐴) |
10 | 9 | albii 1817 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
11 | 3, 10 | bitri 275 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
12 | 2, 11 | bitri 275 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 = wceq 1537 ⊥wfal 1549 [wsb 2064 ∈ wcel 2108 {cab 2717 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-dif 3979 df-nul 4353 |
This theorem is referenced by: neq0 4375 nel0 4377 0el 4386 ssdif0 4389 difin0ss 4396 inssdif0 4397 disjiun 5154 0ex 5325 reldm0 5952 iresn0n0 6083 uzwo 12976 hashgt0elex 14450 nrhmzr 20563 zrninitoringc 20698 hausdiag 23674 rnelfmlem 23981 elons2 28299 prv0 35398 wzel 35788 knoppndv 36500 bj-nul 37022 bj-nuliota 37023 bj-nuliotaALT 37024 nninfnub 37711 prtlem14 38830 orddif0suc 43230 |
Copyright terms: Public domain | W3C validator |