Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eq0 | Structured version Visualization version GIF version |
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2154, ax-12 2171. (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2108, df-clel 2816. (Revised by Gino Giotto, 6-Sep-2024.) |
Ref | Expression |
---|---|
eq0 | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnul4 4258 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
2 | 1 | eqeq2i 2751 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
3 | dfcleq 2731 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
4 | df-clab 2716 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
5 | sbv 2091 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
6 | 4, 5 | bitri 274 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
7 | 6 | bibi2i 338 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
8 | nbfal 1554 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
9 | 7, 8 | bitr4i 277 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ¬ 𝑥 ∈ 𝐴) |
10 | 9 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
11 | 3, 10 | bitri 274 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
12 | 2, 11 | bitri 274 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ⊥wfal 1551 [wsb 2067 ∈ wcel 2106 {cab 2715 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-dif 3890 df-nul 4257 |
This theorem is referenced by: neq0 4279 nel0 4284 0el 4294 ssdif0 4297 difin0ss 4302 inssdif0 4303 ralf0OLD 4448 disjiun 5061 0ex 5231 reldm0 5837 iresn0n0 5963 uzwo 12651 hashgt0elex 14116 hausdiag 22796 rnelfmlem 23103 prv0 33392 wzel 33818 knoppndv 34714 bj-nul 35227 bj-nuliota 35228 bj-nuliotaALT 35229 nninfnub 35909 prtlem14 36888 nrhmzr 45431 zrninitoringc 45629 |
Copyright terms: Public domain | W3C validator |