Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabbida2 Structured version   Visualization version   GIF version

Theorem bj-rabbida2 35094
Description: Version of rabbidva2 3409 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
Hypotheses
Ref Expression
bj-rabbida2.nf 𝑥𝜑
bj-rabbida2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
bj-rabbida2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})

Proof of Theorem bj-rabbida2
StepHypRef Expression
1 bj-rabbida2.nf . . 3 𝑥𝜑
2 bj-rabbida2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
31, 2abbid 2811 . 2 (𝜑 → {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐵𝜒)})
4 df-rab 3075 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
5 df-rab 3075 . 2 {𝑥𝐵𝜒} = {𝑥 ∣ (𝑥𝐵𝜒)}
63, 4, 53eqtr4g 2805 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wnf 1790  wcel 2110  {cab 2717  {crab 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-9 2120  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-rab 3075
This theorem is referenced by:  bj-rabeqd  35095
  Copyright terms: Public domain W3C validator