Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabeqd | Structured version Visualization version GIF version |
Description: Deduction form of rabeq 3418. Note that contrary to rabeq 3418 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
bj-rabeqd.nf | ⊢ Ⅎ𝑥𝜑 |
bj-rabeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
bj-rabeqd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-rabeqd.nf | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | bj-rabeqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi1d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
6 | 1, 5 | bj-rabbida2 35106 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 {crab 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 |
This theorem is referenced by: bj-rabeqbid 35108 bj-rabeqbida 35109 bj-inrab2 35116 |
Copyright terms: Public domain | W3C validator |