Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabeqd Structured version   Visualization version   GIF version

Theorem bj-rabeqd 35009
Description: Deduction form of rabeq 3409. Note that contrary to rabeq 3409 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.)
Hypotheses
Ref Expression
bj-rabeqd.nf 𝑥𝜑
bj-rabeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
bj-rabeqd (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})

Proof of Theorem bj-rabeqd
StepHypRef Expression
1 bj-rabeqd.nf . 2 𝑥𝜑
2 bj-rabeqd.1 . . 3 (𝜑𝐴 = 𝐵)
3 eleq2 2828 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
43anbi1d 633 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
52, 4syl 17 . 2 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
61, 5bj-rabbida2 35008 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wnf 1791  wcel 2112  {crab 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-12 2177  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073
This theorem is referenced by:  bj-rabeqbid  35010  bj-rabeqbida  35011  bj-inrab2  35018
  Copyright terms: Public domain W3C validator