| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbidva2 | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| Ref | Expression |
|---|---|
| rabbidva2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| rabbidva2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidva2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | abbidv 2795 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)}) |
| 3 | df-rab 3395 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 4 | df-rab 3395 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)} | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rab 3395 |
| This theorem is referenced by: rabbia2 3397 rabbidva 3401 rabeq 3409 rabeqbidva 3411 extmptsuppeq 8121 dfac2a 10024 hashbclem 14359 n0cutlt 28254 umgrislfupgrlem 29067 wwlksn0s 29806 wwlksnextwrd 29842 wpthswwlks2on 29906 rusgrnumwwlkl1 29913 clwwlknon1 30041 orvcgteel 34436 orvclteel 34441 wevgblacfn 35086 mapdvalc 41612 mapdval4N 41615 ovncvrrp 46549 ovnsubaddlem1 46555 ovnsubadd 46557 ovncvr2 46596 hspmbl 46614 smflim 46762 smflimsuplem1 46805 smflimsuplem3 46807 smflimsuplem7 46811 smflimsup 46813 initopropd 49232 termopropd 49233 |
| Copyright terms: Public domain | W3C validator |