MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbidva2 Structured version   Visualization version   GIF version

Theorem rabbidva2 3407
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypothesis
Ref Expression
rabbidva2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
rabbidva2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rabbidva2
StepHypRef Expression
1 rabbidva2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
21abbidv 2795 . 2 (𝜑 → {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐵𝜒)})
3 df-rab 3406 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
4 df-rab 3406 . 2 {𝑥𝐵𝜒} = {𝑥 ∣ (𝑥𝐵𝜒)}
52, 3, 43eqtr4g 2789 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  {crab 3405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-rab 3406
This theorem is referenced by:  rabbia2  3408  rabbidva  3412  rabeq  3420  rabeqbidva  3422  extmptsuppeq  8167  dfac2a  10083  hashbclem  14417  n0cutlt  28249  umgrislfupgrlem  29049  wwlksn0s  29791  wwlksnextwrd  29827  wpthswwlks2on  29891  rusgrnumwwlkl1  29898  clwwlknon1  30026  orvcgteel  34459  orvclteel  34464  wevgblacfn  35096  mapdvalc  41623  mapdval4N  41626  ovncvrrp  46562  ovnsubaddlem1  46568  ovnsubadd  46570  ovncvr2  46609  hspmbl  46627  smflim  46775  smflimsuplem1  46818  smflimsuplem3  46820  smflimsuplem7  46824  smflimsup  46826  initopropd  49232  termopropd  49233
  Copyright terms: Public domain W3C validator