![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbidva2 | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
rabbidva2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
rabbidva2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidva2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | abbidv 2795 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)}) |
3 | df-rab 3420 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
4 | df-rab 3420 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)} | |
5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 {crab 3419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-rab 3420 |
This theorem is referenced by: rabbia2 3422 rabbidva 3426 rabeq 3434 extmptsuppeq 8204 dfac2a 10174 hashbclem 14471 umgrislfupgrlem 29061 wwlksn0s 29798 wwlksnextwrd 29834 wpthswwlks2on 29898 rusgrnumwwlkl1 29905 clwwlknon1 30033 orvcgteel 34303 orvclteel 34308 wevgblacfn 34938 mapdvalc 41330 mapdval4N 41333 ovncvrrp 46203 ovnsubaddlem1 46209 ovnsubadd 46211 ovncvr2 46250 hspmbl 46268 smflim 46416 smflimsuplem1 46459 smflimsuplem3 46461 smflimsuplem7 46465 smflimsup 46467 |
Copyright terms: Public domain | W3C validator |