| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbidva2 | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| Ref | Expression |
|---|---|
| rabbidva2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| rabbidva2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidva2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | abbidv 2796 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)}) |
| 3 | df-rab 3409 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 4 | df-rab 3409 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)} | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-rab 3409 |
| This theorem is referenced by: rabbia2 3411 rabbidva 3415 rabeq 3423 rabeqbidva 3425 extmptsuppeq 8170 dfac2a 10090 hashbclem 14424 n0cutlt 28256 umgrislfupgrlem 29056 wwlksn0s 29798 wwlksnextwrd 29834 wpthswwlks2on 29898 rusgrnumwwlkl1 29905 clwwlknon1 30033 orvcgteel 34466 orvclteel 34471 wevgblacfn 35103 mapdvalc 41630 mapdval4N 41633 ovncvrrp 46569 ovnsubaddlem1 46575 ovnsubadd 46577 ovncvr2 46616 hspmbl 46634 smflim 46782 smflimsuplem1 46825 smflimsuplem3 46827 smflimsuplem7 46831 smflimsup 46833 initopropd 49236 termopropd 49237 |
| Copyright terms: Public domain | W3C validator |