MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbidva2 Structured version   Visualization version   GIF version

Theorem rabbidva2 3404
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypothesis
Ref Expression
rabbidva2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
rabbidva2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rabbidva2
StepHypRef Expression
1 rabbidva2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
21abbidv 2795 . 2 (𝜑 → {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐵𝜒)})
3 df-rab 3403 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
4 df-rab 3403 . 2 {𝑥𝐵𝜒} = {𝑥 ∣ (𝑥𝐵𝜒)}
52, 3, 43eqtr4g 2789 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  {crab 3402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-rab 3403
This theorem is referenced by:  rabbia2  3405  rabbidva  3409  rabeq  3417  rabeqbidva  3419  extmptsuppeq  8144  dfac2a  10059  hashbclem  14393  n0cutlt  28289  umgrislfupgrlem  29102  wwlksn0s  29841  wwlksnextwrd  29877  wpthswwlks2on  29941  rusgrnumwwlkl1  29948  clwwlknon1  30076  orvcgteel  34452  orvclteel  34457  wevgblacfn  35089  mapdvalc  41616  mapdval4N  41619  ovncvrrp  46555  ovnsubaddlem1  46561  ovnsubadd  46563  ovncvr2  46602  hspmbl  46620  smflim  46768  smflimsuplem1  46811  smflimsuplem3  46813  smflimsuplem7  46817  smflimsup  46819  initopropd  49225  termopropd  49226
  Copyright terms: Public domain W3C validator