![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbidva2 | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
rabbidva2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
rabbidva2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidva2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | abbidv 2801 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)}) |
3 | df-rab 3433 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
4 | df-rab 3433 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)} | |
5 | 2, 3, 4 | 3eqtr4g 2797 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2709 {crab 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-rab 3433 |
This theorem is referenced by: rabbia2 3435 rabbidva 3439 rabeq 3446 extmptsuppeq 8175 dfac2a 10126 hashbclem 14413 umgrislfupgrlem 28420 wwlksn0s 29153 wwlksnextwrd 29189 wpthswwlks2on 29253 rusgrnumwwlkl1 29260 clwwlknon1 29388 orvcgteel 33535 orvclteel 33540 mapdvalc 40586 mapdval4N 40589 ovncvrrp 45359 ovnsubaddlem1 45365 ovnsubadd 45367 ovncvr2 45406 hspmbl 45424 smflim 45572 smflimsuplem1 45615 smflimsuplem3 45617 smflimsuplem7 45621 smflimsup 45623 |
Copyright terms: Public domain | W3C validator |