| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbidva2 | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| Ref | Expression |
|---|---|
| rabbidva2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| rabbidva2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidva2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | abbidv 2795 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)}) |
| 3 | df-rab 3403 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 4 | df-rab 3403 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)} | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rab 3403 |
| This theorem is referenced by: rabbia2 3405 rabbidva 3409 rabeq 3417 rabeqbidva 3419 extmptsuppeq 8144 dfac2a 10059 hashbclem 14393 n0cutlt 28289 umgrislfupgrlem 29102 wwlksn0s 29841 wwlksnextwrd 29877 wpthswwlks2on 29941 rusgrnumwwlkl1 29948 clwwlknon1 30076 orvcgteel 34452 orvclteel 34457 wevgblacfn 35089 mapdvalc 41616 mapdval4N 41619 ovncvrrp 46555 ovnsubaddlem1 46561 ovnsubadd 46563 ovncvr2 46602 hspmbl 46620 smflim 46768 smflimsuplem1 46811 smflimsuplem3 46813 smflimsuplem7 46817 smflimsup 46819 initopropd 49225 termopropd 49226 |
| Copyright terms: Public domain | W3C validator |