Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabbidva2 | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
rabbidva2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
rabbidva2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidva2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | abbidv 2807 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)}) |
3 | df-rab 3070 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
4 | df-rab 3070 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)} | |
5 | 2, 3, 4 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cab 2714 {crab 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-rab 3070 |
This theorem is referenced by: rabbia2 3387 rabbidva 3388 rabeq 3394 extmptsuppeq 7930 dfac2a 9743 hashbclem 14016 umgrislfupgrlem 27213 wwlksn0s 27945 wwlksnextwrd 27981 wpthswwlks2on 28045 rusgrnumwwlkl1 28052 clwwlknon1 28180 orvcgteel 32146 orvclteel 32151 mapdvalc 39380 mapdval4N 39383 ovncvrrp 43777 ovnsubaddlem1 43783 ovnsubadd 43785 ovncvr2 43824 hspmbl 43842 smflim 43984 smflimsuplem1 44025 smflimsuplem3 44027 smflimsuplem7 44031 smflimsup 44033 |
Copyright terms: Public domain | W3C validator |