![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabeqbid | Structured version Visualization version GIF version |
Description: Version of rabeqbidv 3462 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
bj-rabeqbid.nf | ⊢ Ⅎ𝑥𝜑 |
bj-rabeqbid.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
bj-rabeqbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bj-rabeqbid | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-rabeqbid.nf | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | bj-rabeqbid.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | rabeqd 3473 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
4 | bj-rabeqbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
5 | 1, 4 | rabbid 3472 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
6 | 3, 5 | eqtrd 2780 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnf 1781 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |