| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqd | Structured version Visualization version GIF version | ||
| Description: Deduction form of rabeq 3426. Note that contrary to rabeq 3426 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| rabeqd.nf | ⊢ Ⅎ𝑥𝜑 |
| rabeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqd.nf | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rabeqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | eleq2 2818 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
| 6 | 1, 5 | rabbida4 3437 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {crab 3411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 |
| This theorem is referenced by: rabeqbida 3441 bj-rabeqbid 36906 bj-inrab2 36913 smfinfmpt 46790 |
| Copyright terms: Public domain | W3C validator |