![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqd | Structured version Visualization version GIF version |
Description: Deduction form of rabeq 3451. Note that contrary to rabeq 3451 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
rabeqd.nf | ⊢ Ⅎ𝑥𝜑 |
rabeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rabeqd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqd.nf | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | rabeqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eleq2 2830 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
6 | 1, 5 | rabbida4 3463 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2108 {crab 3436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 |
This theorem is referenced by: rabeqbida 3467 bj-rabeqbid 36916 bj-inrab2 36923 smfinfmpt 46803 |
Copyright terms: Public domain | W3C validator |