![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqd | Structured version Visualization version GIF version |
Description: Deduction form of rabeq 3445. Note that contrary to rabeq 3445 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
rabeqd.nf | ⊢ Ⅎ𝑥𝜑 |
rabeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rabeqd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqd.nf | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | rabeqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eleq2 2818 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi1d 629 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
6 | 1, 5 | rabbida4 3456 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 {crab 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 |
This theorem is referenced by: rabeqbida 3460 bj-rabeqbid 36432 bj-inrab2 36439 |
Copyright terms: Public domain | W3C validator |