MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqd Structured version   Visualization version   GIF version

Theorem rabeqd 3473
Description: Deduction form of rabeq 3458. Note that contrary to rabeq 3458 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.)
Hypotheses
Ref Expression
rabeqd.nf 𝑥𝜑
rabeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rabeqd (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})

Proof of Theorem rabeqd
StepHypRef Expression
1 rabeqd.nf . 2 𝑥𝜑
2 rabeqd.1 . . 3 (𝜑𝐴 = 𝐵)
3 eleq2 2833 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
43anbi1d 630 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
52, 4syl 17 . 2 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
61, 5rabbida4 3470 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  {crab 3443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444
This theorem is referenced by:  rabeqbida  3474  bj-rabeqbid  36887  bj-inrab2  36894
  Copyright terms: Public domain W3C validator