![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqd | Structured version Visualization version GIF version |
Description: Deduction form of rabeq 3444. Note that contrary to rabeq 3444 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
rabeqd.nf | ⊢ Ⅎ𝑥𝜑 |
rabeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rabeqd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqd.nf | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | rabeqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eleq2 2820 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi1d 628 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
6 | 1, 5 | rabbida4 3455 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 {crab 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 |
This theorem is referenced by: rabeqbida 3459 bj-rabeqbid 36106 bj-inrab2 36113 |
Copyright terms: Public domain | W3C validator |