| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | rabeqbidva 3411 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: elfvmptrab1w 6956 elfvmptrab1 6957 fvmptrabfv 6961 elovmporab1w 7593 elovmporab1 7594 ovmpt3rab1 7604 suppval 8092 mpoxopoveq 8149 supeq123d 9334 phival 16678 dfphi2 16685 hashbcval 16914 imasval 17415 ismre 17492 mrisval 17536 isacs 17557 monfval 17639 ismon 17640 monpropd 17644 natfval 17856 isnat 17857 initoval 17900 termoval 17901 gsumvalx 18584 gsumpropd 18586 gsumress 18590 ismgmhm 18604 issubmgm 18610 ismhm 18693 issubm 18711 issubg 19039 isnsg 19067 isgim 19174 isga 19203 cntzfval 19232 isslw 19520 isirred 20337 rnghmval 20358 isrngim 20363 dfrhm2 20392 isrim0 20400 issubrng 20462 issubrg 20486 rrgval 20612 issdrg 20703 abvfval 20725 lssset 20866 islmhm 20961 islmim 20996 islbs 21010 ocvfval 21603 isobs 21657 dsmmval 21671 islinds 21746 mplval 21926 mhpfval 22053 mplbaspropd 22149 dmatval 22407 scmatval 22419 cpmat 22624 cldval 22938 mretopd 23007 neifval 23014 ordtval 23104 ordtbas2 23106 ordtcnv 23116 ordtrest2 23119 cnfval 23148 cnpfval 23149 kgenval 23450 xkoval 23502 dfac14 23533 qtopval 23610 qtopval2 23611 hmeofval 23673 elmptrab 23742 fgval 23785 flimval 23878 utopval 24147 ucnval 24191 iscfilu 24202 ispsmet 24219 ismet 24238 isxmet 24239 blfvalps 24298 cncfval 24808 ishtpy 24898 isphtpy 24907 om1val 24957 cfilfval 25191 caufval 25202 cpnfval 25861 uc1pval 26072 mon1pval 26074 dchrval 27172 leftval 27804 rightval 27805 istrkgl 28436 israg 28675 iseqlg 28845 ttgval 28853 nbgrval 29314 vtxdgfval 29446 vtxdeqd 29456 1egrvtxdg1 29488 umgr2v2evd2 29506 wwlks 29813 wwlksn 29815 wspthsn 29826 wwlksnon 29829 wspthsnon 29830 iswspthsnon 29834 rusgrnumwwlklem 29951 clwwlk 29963 clwwlkn 30006 2clwwlk 30327 numclwlk1lem2 30350 numclwwlkovh0 30352 numclwwlkovq 30354 lnoval 30732 bloval 30761 hmoval 30790 mntoval 32963 tocycval 33077 fxpval 33134 fldgenval 33278 prmidlval 33402 mxidlval 33426 rprmval 33481 minplyval 33718 ordtprsuni 33932 sigagenval 34153 faeval 34259 ismbfm 34264 carsgval 34316 sitgval 34345 reprval 34623 erdszelem3 35237 erdsze 35246 kur14 35260 iscvm 35303 satf 35397 wlimeq12 35861 fwddifval 36206 poimirlem28 37687 istotbnd 37808 isbnd 37819 rngohomval 38003 rngoisoval 38016 idlval 38052 pridlval 38072 maxidlval 38078 igenval 38100 lshpset 39076 lflset 39157 pats 39383 llnset 39603 lplnset 39627 lvolset 39670 lineset 39836 pmapfval 39854 paddfval 39895 lhpset 40093 ldilfset 40206 ltrnfset 40215 ltrnset 40216 dilfsetN 40250 trnfsetN 40253 trnsetN 40254 diaffval 41128 diafval 41129 dicffval 41272 dochffval 41447 lpolsetN 41580 lcdfval 41686 lcdval 41687 mapdffval 41724 mapdfval 41725 prjcrvfval 42723 isnacs 42796 mzpclval 42817 k0004val 44242 dvnprodlem1 46043 fourierdlem2 46206 fourierdlem3 46207 etransclem12 46343 etransclem33 46364 caragenval 46590 smflimlem3 46870 fvmptrab 47391 iccpval 47514 clnbgrval 47921 isisubgr 47961 grtri 48039 stgrfv 48052 gpgov 48141 assintopval 48304 dmatALTval 48500 lcoop 48511 lines 48831 rrxlines 48833 spheres 48846 |
| Copyright terms: Public domain | W3C validator |