![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | rabeqbidva 3449 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 {crab 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 |
This theorem is referenced by: elfvmptrab1w 7042 elfvmptrab1 7043 fvmptrabfv 7047 elovmporab1w 7679 elovmporab1 7680 ovmpt3rab1 7690 suppval 8185 mpoxopoveq 8242 supeq123d 9487 phival 16800 dfphi2 16807 hashbcval 17035 imasval 17557 ismre 17634 mrisval 17674 isacs 17695 monfval 17779 ismon 17780 monpropd 17784 natfval 18000 isnat 18001 initoval 18046 termoval 18047 gsumvalx 18701 gsumpropd 18703 gsumress 18707 ismgmhm 18721 issubmgm 18727 ismhm 18810 issubm 18828 issubg 19156 isnsg 19185 isgim 19292 isga 19321 cntzfval 19350 isslw 19640 isirred 20435 rnghmval 20456 isrngim 20461 dfrhm2 20490 isrim0OLD 20497 isrim0 20499 issubrng 20563 issubrg 20587 rrgval 20713 issdrg 20805 abvfval 20827 lssset 20948 islmhm 21043 islmim 21078 islbs 21092 ocvfval 21701 isobs 21757 dsmmval 21771 islinds 21846 mplval 22026 mhpfval 22159 mplbaspropd 22253 dmatval 22513 scmatval 22525 cpmat 22730 cldval 23046 mretopd 23115 neifval 23122 ordtval 23212 ordtbas2 23214 ordtcnv 23224 ordtrest2 23227 cnfval 23256 cnpfval 23257 kgenval 23558 xkoval 23610 dfac14 23641 qtopval 23718 qtopval2 23719 hmeofval 23781 elmptrab 23850 fgval 23893 flimval 23986 utopval 24256 ucnval 24301 iscfilu 24312 ispsmet 24329 ismet 24348 isxmet 24349 blfvalps 24408 cncfval 24927 ishtpy 25017 isphtpy 25026 om1val 25076 cfilfval 25311 caufval 25322 cpnfval 25982 uc1pval 26193 mon1pval 26195 dchrval 27292 leftval 27916 rightval 27917 istrkgl 28480 israg 28719 iseqlg 28889 ttgval 28897 ttgvalOLD 28898 nbgrval 29367 vtxdgfval 29499 vtxdeqd 29509 1egrvtxdg1 29541 umgr2v2evd2 29559 wwlks 29864 wwlksn 29866 wspthsn 29877 wwlksnon 29880 wspthsnon 29881 iswspthsnon 29885 rusgrnumwwlklem 29999 clwwlk 30011 clwwlkn 30054 2clwwlk 30375 numclwlk1lem2 30398 numclwwlkovh0 30400 numclwwlkovq 30402 lnoval 30780 bloval 30809 hmoval 30838 mntoval 32956 tocycval 33110 fldgenval 33293 prmidlval 33444 mxidlval 33468 rprmval 33523 minplyval 33712 ordtprsuni 33879 sigagenval 34120 faeval 34226 ismbfm 34231 carsgval 34284 sitgval 34313 reprval 34603 erdszelem3 35177 erdsze 35186 kur14 35200 iscvm 35243 satf 35337 wlimeq12 35800 fwddifval 36143 poimirlem28 37634 istotbnd 37755 isbnd 37766 rngohomval 37950 rngoisoval 37963 idlval 37999 pridlval 38019 maxidlval 38025 igenval 38047 lshpset 38959 lflset 39040 pats 39266 llnset 39487 lplnset 39511 lvolset 39554 lineset 39720 pmapfval 39738 paddfval 39779 lhpset 39977 ldilfset 40090 ltrnfset 40099 ltrnset 40100 dilfsetN 40134 trnfsetN 40137 trnsetN 40138 diaffval 41012 diafval 41013 dicffval 41156 dochffval 41331 lpolsetN 41464 lcdfval 41570 lcdval 41571 mapdffval 41608 mapdfval 41609 prjcrvfval 42617 isnacs 42691 mzpclval 42712 k0004val 44139 dvnprodlem1 45901 fourierdlem2 46064 fourierdlem3 46065 etransclem12 46201 etransclem33 46222 caragenval 46448 smflimlem3 46728 fvmptrab 47241 iccpval 47339 clnbgrval 47746 isisubgr 47785 grtri 47844 stgrfv 47855 gpgov 47936 assintopval 48048 dmatALTval 48245 lcoop 48256 lines 48580 rrxlines 48582 spheres 48595 |
Copyright terms: Public domain | W3C validator |