| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | rabeqbidva 3419 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 |
| This theorem is referenced by: elfvmptrab1w 6977 elfvmptrab1 6978 fvmptrabfv 6982 elovmporab1w 7616 elovmporab1 7617 ovmpt3rab1 7627 suppval 8118 mpoxopoveq 8175 supeq123d 9377 phival 16713 dfphi2 16720 hashbcval 16949 imasval 17450 ismre 17527 mrisval 17571 isacs 17592 monfval 17674 ismon 17675 monpropd 17679 natfval 17891 isnat 17892 initoval 17935 termoval 17936 gsumvalx 18585 gsumpropd 18587 gsumress 18591 ismgmhm 18605 issubmgm 18611 ismhm 18694 issubm 18712 issubg 19040 isnsg 19069 isgim 19176 isga 19205 cntzfval 19234 isslw 19522 isirred 20339 rnghmval 20360 isrngim 20365 dfrhm2 20394 isrim0OLD 20401 isrim0 20403 issubrng 20467 issubrg 20491 rrgval 20617 issdrg 20708 abvfval 20730 lssset 20871 islmhm 20966 islmim 21001 islbs 21015 ocvfval 21608 isobs 21662 dsmmval 21676 islinds 21751 mplval 21931 mhpfval 22058 mplbaspropd 22154 dmatval 22412 scmatval 22424 cpmat 22629 cldval 22943 mretopd 23012 neifval 23019 ordtval 23109 ordtbas2 23111 ordtcnv 23121 ordtrest2 23124 cnfval 23153 cnpfval 23154 kgenval 23455 xkoval 23507 dfac14 23538 qtopval 23615 qtopval2 23616 hmeofval 23678 elmptrab 23747 fgval 23790 flimval 23883 utopval 24153 ucnval 24197 iscfilu 24208 ispsmet 24225 ismet 24244 isxmet 24245 blfvalps 24304 cncfval 24814 ishtpy 24904 isphtpy 24913 om1val 24963 cfilfval 25197 caufval 25208 cpnfval 25867 uc1pval 26078 mon1pval 26080 dchrval 27178 leftval 27808 rightval 27809 istrkgl 28438 israg 28677 iseqlg 28847 ttgval 28855 nbgrval 29316 vtxdgfval 29448 vtxdeqd 29458 1egrvtxdg1 29490 umgr2v2evd2 29508 wwlks 29815 wwlksn 29817 wspthsn 29828 wwlksnon 29831 wspthsnon 29832 iswspthsnon 29836 rusgrnumwwlklem 29950 clwwlk 29962 clwwlkn 30005 2clwwlk 30326 numclwlk1lem2 30349 numclwwlkovh0 30351 numclwwlkovq 30353 lnoval 30731 bloval 30760 hmoval 30789 mntoval 32954 tocycval 33080 fxpval 33137 fldgenval 33278 prmidlval 33401 mxidlval 33425 rprmval 33480 minplyval 33688 ordtprsuni 33902 sigagenval 34123 faeval 34229 ismbfm 34234 carsgval 34287 sitgval 34316 reprval 34594 erdszelem3 35173 erdsze 35182 kur14 35196 iscvm 35239 satf 35333 wlimeq12 35800 fwddifval 36143 poimirlem28 37635 istotbnd 37756 isbnd 37767 rngohomval 37951 rngoisoval 37964 idlval 38000 pridlval 38020 maxidlval 38026 igenval 38048 lshpset 38964 lflset 39045 pats 39271 llnset 39492 lplnset 39516 lvolset 39559 lineset 39725 pmapfval 39743 paddfval 39784 lhpset 39982 ldilfset 40095 ltrnfset 40104 ltrnset 40105 dilfsetN 40139 trnfsetN 40142 trnsetN 40143 diaffval 41017 diafval 41018 dicffval 41161 dochffval 41336 lpolsetN 41469 lcdfval 41575 lcdval 41576 mapdffval 41613 mapdfval 41614 prjcrvfval 42612 isnacs 42685 mzpclval 42706 k0004val 44132 dvnprodlem1 45937 fourierdlem2 46100 fourierdlem3 46101 etransclem12 46237 etransclem33 46258 caragenval 46484 smflimlem3 46764 fvmptrab 47286 iccpval 47409 clnbgrval 47816 isisubgr 47855 grtri 47932 stgrfv 47945 gpgov 48026 assintopval 48186 dmatALTval 48382 lcoop 48393 lines 48713 rrxlines 48715 spheres 48728 |
| Copyright terms: Public domain | W3C validator |