Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | rabeqdv 3409 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
3 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 3 | rabbidv 3404 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
5 | 2, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 |
This theorem is referenced by: elfvmptrab1w 6883 elfvmptrab1 6884 fvmptrabfv 6888 elovmporab1w 7494 elovmporab1 7495 ovmpt3rab1 7505 suppval 7950 mpoxopoveq 8006 supeq123d 9139 phival 16396 dfphi2 16403 hashbcval 16631 imasval 17139 ismre 17216 mrisval 17256 isacs 17277 monfval 17361 ismon 17362 monpropd 17366 natfval 17578 isnat 17579 initoval 17624 termoval 17625 gsumvalx 18275 gsumpropd 18277 gsumress 18281 ismhm 18347 issubm 18357 issubg 18670 isnsg 18698 isgim 18793 isga 18812 cntzfval 18841 isslw 19128 isirred 19856 dfrhm2 19876 isrim0 19882 issubrg 19939 issdrg 19978 abvfval 19993 lssset 20110 islmhm 20204 islmim 20239 islbs 20253 rrgval 20471 ocvfval 20783 isobs 20837 dsmmval 20851 islinds 20926 mplval 21107 mhpfval 21239 mplbaspropd 21318 dmatval 21549 scmatval 21561 cpmat 21766 cldval 22082 mretopd 22151 neifval 22158 ordtval 22248 ordtbas2 22250 ordtcnv 22260 ordtrest2 22263 cnfval 22292 cnpfval 22293 kgenval 22594 xkoval 22646 dfac14 22677 qtopval 22754 qtopval2 22755 hmeofval 22817 elmptrab 22886 fgval 22929 flimval 23022 utopval 23292 ucnval 23337 iscfilu 23348 ispsmet 23365 ismet 23384 isxmet 23385 blfvalps 23444 cncfval 23957 ishtpy 24041 isphtpy 24050 om1val 24099 cfilfval 24333 caufval 24344 cpnfval 25001 uc1pval 25209 mon1pval 25211 dchrval 26287 istrkgl 26723 israg 26962 iseqlg 27132 ttgval 27140 nbgrval 27606 vtxdgfval 27737 vtxdeqd 27747 1egrvtxdg1 27779 umgr2v2evd2 27797 wwlks 28101 wwlksn 28103 wspthsn 28114 wwlksnon 28117 wspthsnon 28118 iswspthsnon 28122 rusgrnumwwlklem 28236 clwwlk 28248 clwwlkn 28291 2clwwlk 28612 numclwlk1lem2 28635 numclwwlkovh0 28637 numclwwlkovq 28639 lnoval 29015 bloval 29044 hmoval 29073 mntoval 31162 tocycval 31277 prmidlval 31514 mxidlval 31535 rprmval 31566 ordtprsuni 31771 sigagenval 32008 faeval 32114 ismbfm 32119 carsgval 32170 sitgval 32199 reprval 32490 erdszelem3 33055 erdsze 33064 kur14 33078 iscvm 33121 satf 33215 wlimeq12 33740 leftval 33974 rightval 33975 fwddifval 34391 poimirlem28 35732 istotbnd 35854 isbnd 35865 rngohomval 36049 rngoisoval 36062 idlval 36098 pridlval 36118 maxidlval 36124 igenval 36146 lshpset 36919 lflset 37000 pats 37226 llnset 37446 lplnset 37470 lvolset 37513 lineset 37679 pmapfval 37697 paddfval 37738 lhpset 37936 ldilfset 38049 ltrnfset 38058 ltrnset 38059 dilfsetN 38093 trnfsetN 38096 trnsetN 38097 diaffval 38971 diafval 38972 dicffval 39115 dochffval 39290 lpolsetN 39423 lcdfval 39529 lcdval 39530 mapdffval 39567 mapdfval 39568 isnacs 40442 mzpclval 40463 k0004val 41649 fourierdlem2 43540 fourierdlem3 43541 etransclem12 43677 etransclem33 43698 caragenval 43921 smflimlem3 44195 fvmptrab 44671 iccpval 44755 ismgmhm 45225 issubmgm 45231 assintopval 45287 rnghmval 45337 isrngisom 45342 dmatALTval 45629 lcoop 45640 lines 45965 rrxlines 45967 spheres 45980 |
Copyright terms: Public domain | W3C validator |