| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | rabeqbidva 3422 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 |
| This theorem is referenced by: elfvmptrab1w 6995 elfvmptrab1 6996 fvmptrabfv 7000 elovmporab1w 7636 elovmporab1 7637 ovmpt3rab1 7647 suppval 8141 mpoxopoveq 8198 supeq123d 9401 phival 16737 dfphi2 16744 hashbcval 16973 imasval 17474 ismre 17551 mrisval 17591 isacs 17612 monfval 17694 ismon 17695 monpropd 17699 natfval 17911 isnat 17912 initoval 17955 termoval 17956 gsumvalx 18603 gsumpropd 18605 gsumress 18609 ismgmhm 18623 issubmgm 18629 ismhm 18712 issubm 18730 issubg 19058 isnsg 19087 isgim 19194 isga 19223 cntzfval 19252 isslw 19538 isirred 20328 rnghmval 20349 isrngim 20354 dfrhm2 20383 isrim0OLD 20390 isrim0 20392 issubrng 20456 issubrg 20480 rrgval 20606 issdrg 20697 abvfval 20719 lssset 20839 islmhm 20934 islmim 20969 islbs 20983 ocvfval 21575 isobs 21629 dsmmval 21643 islinds 21718 mplval 21898 mhpfval 22025 mplbaspropd 22121 dmatval 22379 scmatval 22391 cpmat 22596 cldval 22910 mretopd 22979 neifval 22986 ordtval 23076 ordtbas2 23078 ordtcnv 23088 ordtrest2 23091 cnfval 23120 cnpfval 23121 kgenval 23422 xkoval 23474 dfac14 23505 qtopval 23582 qtopval2 23583 hmeofval 23645 elmptrab 23714 fgval 23757 flimval 23850 utopval 24120 ucnval 24164 iscfilu 24175 ispsmet 24192 ismet 24211 isxmet 24212 blfvalps 24271 cncfval 24781 ishtpy 24871 isphtpy 24880 om1val 24930 cfilfval 25164 caufval 25175 cpnfval 25834 uc1pval 26045 mon1pval 26047 dchrval 27145 leftval 27771 rightval 27772 istrkgl 28385 israg 28624 iseqlg 28794 ttgval 28802 nbgrval 29263 vtxdgfval 29395 vtxdeqd 29405 1egrvtxdg1 29437 umgr2v2evd2 29455 wwlks 29765 wwlksn 29767 wspthsn 29778 wwlksnon 29781 wspthsnon 29782 iswspthsnon 29786 rusgrnumwwlklem 29900 clwwlk 29912 clwwlkn 29955 2clwwlk 30276 numclwlk1lem2 30299 numclwwlkovh0 30301 numclwwlkovq 30303 lnoval 30681 bloval 30710 hmoval 30739 mntoval 32908 tocycval 33065 fxpval 33122 fldgenval 33262 prmidlval 33408 mxidlval 33432 rprmval 33487 minplyval 33695 ordtprsuni 33909 sigagenval 34130 faeval 34236 ismbfm 34241 carsgval 34294 sitgval 34323 reprval 34601 erdszelem3 35180 erdsze 35189 kur14 35203 iscvm 35246 satf 35340 wlimeq12 35807 fwddifval 36150 poimirlem28 37642 istotbnd 37763 isbnd 37774 rngohomval 37958 rngoisoval 37971 idlval 38007 pridlval 38027 maxidlval 38033 igenval 38055 lshpset 38971 lflset 39052 pats 39278 llnset 39499 lplnset 39523 lvolset 39566 lineset 39732 pmapfval 39750 paddfval 39791 lhpset 39989 ldilfset 40102 ltrnfset 40111 ltrnset 40112 dilfsetN 40146 trnfsetN 40149 trnsetN 40150 diaffval 41024 diafval 41025 dicffval 41168 dochffval 41343 lpolsetN 41476 lcdfval 41582 lcdval 41583 mapdffval 41620 mapdfval 41621 prjcrvfval 42619 isnacs 42692 mzpclval 42713 k0004val 44139 dvnprodlem1 45944 fourierdlem2 46107 fourierdlem3 46108 etransclem12 46244 etransclem33 46265 caragenval 46491 smflimlem3 46771 fvmptrab 47293 iccpval 47416 clnbgrval 47823 isisubgr 47862 grtri 47939 stgrfv 47952 gpgov 48033 assintopval 48193 dmatALTval 48389 lcoop 48400 lines 48720 rrxlines 48722 spheres 48735 |
| Copyright terms: Public domain | W3C validator |