| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | rabeqbidva 3432 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 |
| This theorem is referenced by: elfvmptrab1w 7012 elfvmptrab1 7013 fvmptrabfv 7017 elovmporab1w 7652 elovmporab1 7653 ovmpt3rab1 7663 suppval 8159 mpoxopoveq 8216 supeq123d 9460 phival 16784 dfphi2 16791 hashbcval 17020 imasval 17523 ismre 17600 mrisval 17640 isacs 17661 monfval 17743 ismon 17744 monpropd 17748 natfval 17960 isnat 17961 initoval 18004 termoval 18005 gsumvalx 18652 gsumpropd 18654 gsumress 18658 ismgmhm 18672 issubmgm 18678 ismhm 18761 issubm 18779 issubg 19107 isnsg 19136 isgim 19243 isga 19272 cntzfval 19301 isslw 19587 isirred 20377 rnghmval 20398 isrngim 20403 dfrhm2 20432 isrim0OLD 20439 isrim0 20441 issubrng 20505 issubrg 20529 rrgval 20655 issdrg 20746 abvfval 20768 lssset 20888 islmhm 20983 islmim 21018 islbs 21032 ocvfval 21624 isobs 21678 dsmmval 21692 islinds 21767 mplval 21947 mhpfval 22074 mplbaspropd 22170 dmatval 22428 scmatval 22440 cpmat 22645 cldval 22959 mretopd 23028 neifval 23035 ordtval 23125 ordtbas2 23127 ordtcnv 23137 ordtrest2 23140 cnfval 23169 cnpfval 23170 kgenval 23471 xkoval 23523 dfac14 23554 qtopval 23631 qtopval2 23632 hmeofval 23694 elmptrab 23763 fgval 23806 flimval 23899 utopval 24169 ucnval 24213 iscfilu 24224 ispsmet 24241 ismet 24260 isxmet 24261 blfvalps 24320 cncfval 24830 ishtpy 24920 isphtpy 24929 om1val 24979 cfilfval 25214 caufval 25225 cpnfval 25884 uc1pval 26095 mon1pval 26097 dchrval 27195 leftval 27819 rightval 27820 istrkgl 28383 israg 28622 iseqlg 28792 ttgval 28800 nbgrval 29261 vtxdgfval 29393 vtxdeqd 29403 1egrvtxdg1 29435 umgr2v2evd2 29453 wwlks 29763 wwlksn 29765 wspthsn 29776 wwlksnon 29779 wspthsnon 29780 iswspthsnon 29784 rusgrnumwwlklem 29898 clwwlk 29910 clwwlkn 29953 2clwwlk 30274 numclwlk1lem2 30297 numclwwlkovh0 30299 numclwwlkovq 30301 lnoval 30679 bloval 30708 hmoval 30737 mntoval 32908 tocycval 33065 fldgenval 33252 prmidlval 33398 mxidlval 33422 rprmval 33477 minplyval 33685 ordtprsuni 33896 sigagenval 34117 faeval 34223 ismbfm 34228 carsgval 34281 sitgval 34310 reprval 34588 erdszelem3 35161 erdsze 35170 kur14 35184 iscvm 35227 satf 35321 wlimeq12 35783 fwddifval 36126 poimirlem28 37618 istotbnd 37739 isbnd 37750 rngohomval 37934 rngoisoval 37947 idlval 37983 pridlval 38003 maxidlval 38009 igenval 38031 lshpset 38942 lflset 39023 pats 39249 llnset 39470 lplnset 39494 lvolset 39537 lineset 39703 pmapfval 39721 paddfval 39762 lhpset 39960 ldilfset 40073 ltrnfset 40082 ltrnset 40083 dilfsetN 40117 trnfsetN 40120 trnsetN 40121 diaffval 40995 diafval 40996 dicffval 41139 dochffval 41314 lpolsetN 41447 lcdfval 41553 lcdval 41554 mapdffval 41591 mapdfval 41592 prjcrvfval 42601 isnacs 42674 mzpclval 42695 k0004val 44121 dvnprodlem1 45923 fourierdlem2 46086 fourierdlem3 46087 etransclem12 46223 etransclem33 46244 caragenval 46470 smflimlem3 46750 fvmptrab 47269 iccpval 47377 clnbgrval 47784 isisubgr 47823 grtri 47900 stgrfv 47913 gpgov 47994 assintopval 48128 dmatALTval 48324 lcoop 48335 lines 48659 rrxlines 48661 spheres 48674 |
| Copyright terms: Public domain | W3C validator |