![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | rabeqdv 3407 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
3 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 3 | rabbidv 3403 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
5 | 2, 4 | eqtrd 2814 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 {crab 3092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-ral 3093 df-rab 3097 |
This theorem is referenced by: elfvmptrab1 6620 fvmptrabfv 6624 elovmporab1 7211 ovmpt3rab1 7221 suppval 7635 mpoxopoveq 7688 supeq123d 8709 phival 15960 dfphi2 15967 hashbcval 16194 imasval 16640 ismre 16719 mrisval 16759 isacs 16780 monfval 16860 ismon 16861 monpropd 16865 natfval 17074 isnat 17075 initoval 17115 termoval 17116 gsumvalx 17738 gsumpropd 17740 gsumress 17744 ismhm 17805 issubm 17815 issubg 18063 isnsg 18092 isgim 18173 isga 18192 cntzfval 18221 isslw 18494 isirred 19172 dfrhm2 19192 isrim0 19198 issubrg 19258 issdrg 19296 abvfval 19311 lssset 19427 islmhm 19521 islmim 19556 islbs 19570 rrgval 19781 mplval 19922 mhpfval 20038 mplbaspropd 20108 ocvfval 20512 isobs 20566 dsmmval 20580 islinds 20655 dmatval 20805 scmatval 20817 cpmat 21021 cldval 21335 mretopd 21404 neifval 21411 ordtval 21501 ordtbas2 21503 ordtcnv 21513 ordtrest2 21516 cnfval 21545 cnpfval 21546 kgenval 21847 xkoval 21899 dfac14 21930 qtopval 22007 qtopval2 22008 hmeofval 22070 elmptrab 22139 fgval 22182 flimval 22275 utopval 22544 ucnval 22589 iscfilu 22600 ispsmet 22617 ismet 22636 isxmet 22637 blfvalps 22696 cncfval 23199 ishtpy 23279 isphtpy 23288 om1val 23337 cfilfval 23570 caufval 23581 cpnfval 24232 uc1pval 24436 mon1pval 24438 dchrval 25512 istrkgl 25946 israg 26185 iseqlg 26356 ttgval 26364 nbgrval 26821 vtxdgfval 26952 vtxdeqd 26962 1egrvtxdg1 26994 umgr2v2evd2 27012 wwlks 27321 wwlksn 27323 wspthsn 27334 wwlksnon 27337 wspthsnon 27338 iswspthsnon 27342 rusgrnumwwlklem 27476 clwwlk 27489 clwwlkn 27541 2clwwlk 27884 numclwlk1lem2 27923 numclwwlkovh0 27925 numclwwlkovq 27927 lnoval 28306 bloval 28335 hmoval 28364 tocycval 30452 ordtprsuni 30812 sigagenval 31050 faeval 31156 ismbfm 31161 carsgval 31212 sitgval 31241 reprval 31535 erdszelem3 32031 erdsze 32040 kur14 32054 iscvm 32097 satf 32187 wlimeq12 32633 fwddifval 33150 poimirlem28 34367 istotbnd 34495 isbnd 34506 rngohomval 34690 rngoisoval 34703 idlval 34739 pridlval 34759 maxidlval 34765 igenval 34787 lshpset 35565 lflset 35646 pats 35872 llnset 36092 lplnset 36116 lvolset 36159 lineset 36325 pmapfval 36343 paddfval 36384 lhpset 36582 ldilfset 36695 ltrnfset 36704 ltrnset 36705 dilfsetN 36739 trnfsetN 36742 trnsetN 36743 diaffval 37617 diafval 37618 dicffval 37761 dochffval 37936 lpolsetN 38069 lcdfval 38175 lcdval 38176 mapdffval 38213 mapdfval 38214 isnacs 38702 mzpclval 38723 k0004val 39869 fourierdlem2 41831 fourierdlem3 41832 etransclem12 41968 etransclem33 41989 caragenval 42212 smflimlem3 42486 fvmptrab 42903 iccpval 42953 ismgmhm 43424 issubmgm 43430 assintopval 43482 rnghmval 43532 isrngisom 43537 dmatALTval 43828 lcoop 43839 lines 44092 rrxlines 44094 spheres 44107 |
Copyright terms: Public domain | W3C validator |