| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | rabeqbidva 3425 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 |
| This theorem is referenced by: elfvmptrab1w 6998 elfvmptrab1 6999 fvmptrabfv 7003 elovmporab1w 7639 elovmporab1 7640 ovmpt3rab1 7650 suppval 8144 mpoxopoveq 8201 supeq123d 9408 phival 16744 dfphi2 16751 hashbcval 16980 imasval 17481 ismre 17558 mrisval 17598 isacs 17619 monfval 17701 ismon 17702 monpropd 17706 natfval 17918 isnat 17919 initoval 17962 termoval 17963 gsumvalx 18610 gsumpropd 18612 gsumress 18616 ismgmhm 18630 issubmgm 18636 ismhm 18719 issubm 18737 issubg 19065 isnsg 19094 isgim 19201 isga 19230 cntzfval 19259 isslw 19545 isirred 20335 rnghmval 20356 isrngim 20361 dfrhm2 20390 isrim0OLD 20397 isrim0 20399 issubrng 20463 issubrg 20487 rrgval 20613 issdrg 20704 abvfval 20726 lssset 20846 islmhm 20941 islmim 20976 islbs 20990 ocvfval 21582 isobs 21636 dsmmval 21650 islinds 21725 mplval 21905 mhpfval 22032 mplbaspropd 22128 dmatval 22386 scmatval 22398 cpmat 22603 cldval 22917 mretopd 22986 neifval 22993 ordtval 23083 ordtbas2 23085 ordtcnv 23095 ordtrest2 23098 cnfval 23127 cnpfval 23128 kgenval 23429 xkoval 23481 dfac14 23512 qtopval 23589 qtopval2 23590 hmeofval 23652 elmptrab 23721 fgval 23764 flimval 23857 utopval 24127 ucnval 24171 iscfilu 24182 ispsmet 24199 ismet 24218 isxmet 24219 blfvalps 24278 cncfval 24788 ishtpy 24878 isphtpy 24887 om1val 24937 cfilfval 25171 caufval 25182 cpnfval 25841 uc1pval 26052 mon1pval 26054 dchrval 27152 leftval 27778 rightval 27779 istrkgl 28392 israg 28631 iseqlg 28801 ttgval 28809 nbgrval 29270 vtxdgfval 29402 vtxdeqd 29412 1egrvtxdg1 29444 umgr2v2evd2 29462 wwlks 29772 wwlksn 29774 wspthsn 29785 wwlksnon 29788 wspthsnon 29789 iswspthsnon 29793 rusgrnumwwlklem 29907 clwwlk 29919 clwwlkn 29962 2clwwlk 30283 numclwlk1lem2 30306 numclwwlkovh0 30308 numclwwlkovq 30310 lnoval 30688 bloval 30717 hmoval 30746 mntoval 32915 tocycval 33072 fxpval 33129 fldgenval 33269 prmidlval 33415 mxidlval 33439 rprmval 33494 minplyval 33702 ordtprsuni 33916 sigagenval 34137 faeval 34243 ismbfm 34248 carsgval 34301 sitgval 34330 reprval 34608 erdszelem3 35187 erdsze 35196 kur14 35210 iscvm 35253 satf 35347 wlimeq12 35814 fwddifval 36157 poimirlem28 37649 istotbnd 37770 isbnd 37781 rngohomval 37965 rngoisoval 37978 idlval 38014 pridlval 38034 maxidlval 38040 igenval 38062 lshpset 38978 lflset 39059 pats 39285 llnset 39506 lplnset 39530 lvolset 39573 lineset 39739 pmapfval 39757 paddfval 39798 lhpset 39996 ldilfset 40109 ltrnfset 40118 ltrnset 40119 dilfsetN 40153 trnfsetN 40156 trnsetN 40157 diaffval 41031 diafval 41032 dicffval 41175 dochffval 41350 lpolsetN 41483 lcdfval 41589 lcdval 41590 mapdffval 41627 mapdfval 41628 prjcrvfval 42626 isnacs 42699 mzpclval 42720 k0004val 44146 dvnprodlem1 45951 fourierdlem2 46114 fourierdlem3 46115 etransclem12 46251 etransclem33 46272 caragenval 46498 smflimlem3 46778 fvmptrab 47297 iccpval 47420 clnbgrval 47827 isisubgr 47866 grtri 47943 stgrfv 47956 gpgov 48037 assintopval 48197 dmatALTval 48393 lcoop 48404 lines 48724 rrxlines 48726 spheres 48739 |
| Copyright terms: Public domain | W3C validator |