| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | rabeqbidva 3411 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 |
| This theorem is referenced by: elfvmptrab1w 6957 elfvmptrab1 6958 fvmptrabfv 6962 elovmporab1w 7596 elovmporab1 7597 ovmpt3rab1 7607 suppval 8095 mpoxopoveq 8152 supeq123d 9340 phival 16678 dfphi2 16685 hashbcval 16914 imasval 17415 ismre 17492 mrisval 17536 isacs 17557 monfval 17639 ismon 17640 monpropd 17644 natfval 17856 isnat 17857 initoval 17900 termoval 17901 gsumvalx 18550 gsumpropd 18552 gsumress 18556 ismgmhm 18570 issubmgm 18576 ismhm 18659 issubm 18677 issubg 19005 isnsg 19034 isgim 19141 isga 19170 cntzfval 19199 isslw 19487 isirred 20304 rnghmval 20325 isrngim 20330 dfrhm2 20359 isrim0OLD 20366 isrim0 20368 issubrng 20432 issubrg 20456 rrgval 20582 issdrg 20673 abvfval 20695 lssset 20836 islmhm 20931 islmim 20966 islbs 20980 ocvfval 21573 isobs 21627 dsmmval 21641 islinds 21716 mplval 21896 mhpfval 22023 mplbaspropd 22119 dmatval 22377 scmatval 22389 cpmat 22594 cldval 22908 mretopd 22977 neifval 22984 ordtval 23074 ordtbas2 23076 ordtcnv 23086 ordtrest2 23089 cnfval 23118 cnpfval 23119 kgenval 23420 xkoval 23472 dfac14 23503 qtopval 23580 qtopval2 23581 hmeofval 23643 elmptrab 23712 fgval 23755 flimval 23848 utopval 24118 ucnval 24162 iscfilu 24173 ispsmet 24190 ismet 24209 isxmet 24210 blfvalps 24269 cncfval 24779 ishtpy 24869 isphtpy 24878 om1val 24928 cfilfval 25162 caufval 25173 cpnfval 25832 uc1pval 26043 mon1pval 26045 dchrval 27143 leftval 27775 rightval 27776 istrkgl 28407 israg 28646 iseqlg 28816 ttgval 28824 nbgrval 29285 vtxdgfval 29417 vtxdeqd 29427 1egrvtxdg1 29459 umgr2v2evd2 29477 wwlks 29784 wwlksn 29786 wspthsn 29797 wwlksnon 29800 wspthsnon 29801 iswspthsnon 29805 rusgrnumwwlklem 29919 clwwlk 29931 clwwlkn 29974 2clwwlk 30295 numclwlk1lem2 30318 numclwwlkovh0 30320 numclwwlkovq 30322 lnoval 30700 bloval 30729 hmoval 30758 mntoval 32933 tocycval 33059 fxpval 33116 fldgenval 33260 prmidlval 33383 mxidlval 33407 rprmval 33462 minplyval 33688 ordtprsuni 33902 sigagenval 34123 faeval 34229 ismbfm 34234 carsgval 34287 sitgval 34316 reprval 34594 erdszelem3 35186 erdsze 35195 kur14 35209 iscvm 35252 satf 35346 wlimeq12 35813 fwddifval 36156 poimirlem28 37648 istotbnd 37769 isbnd 37780 rngohomval 37964 rngoisoval 37977 idlval 38013 pridlval 38033 maxidlval 38039 igenval 38061 lshpset 38977 lflset 39058 pats 39284 llnset 39504 lplnset 39528 lvolset 39571 lineset 39737 pmapfval 39755 paddfval 39796 lhpset 39994 ldilfset 40107 ltrnfset 40116 ltrnset 40117 dilfsetN 40151 trnfsetN 40154 trnsetN 40155 diaffval 41029 diafval 41030 dicffval 41173 dochffval 41348 lpolsetN 41481 lcdfval 41587 lcdval 41588 mapdffval 41625 mapdfval 41626 prjcrvfval 42624 isnacs 42697 mzpclval 42718 k0004val 44143 dvnprodlem1 45947 fourierdlem2 46110 fourierdlem3 46111 etransclem12 46247 etransclem33 46268 caragenval 46494 smflimlem3 46774 fvmptrab 47296 iccpval 47419 clnbgrval 47826 isisubgr 47866 grtri 47944 stgrfv 47957 gpgov 48046 assintopval 48209 dmatALTval 48405 lcoop 48416 lines 48736 rrxlines 48738 spheres 48751 |
| Copyright terms: Public domain | W3C validator |