![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | rabeqbidva 3460 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 |
This theorem is referenced by: elfvmptrab1w 7056 elfvmptrab1 7057 fvmptrabfv 7061 elovmporab1w 7697 elovmporab1 7698 ovmpt3rab1 7708 suppval 8203 mpoxopoveq 8260 supeq123d 9519 phival 16814 dfphi2 16821 hashbcval 17049 imasval 17571 ismre 17648 mrisval 17688 isacs 17709 monfval 17793 ismon 17794 monpropd 17798 natfval 18014 isnat 18015 initoval 18060 termoval 18061 gsumvalx 18714 gsumpropd 18716 gsumress 18720 ismgmhm 18734 issubmgm 18740 ismhm 18820 issubm 18838 issubg 19166 isnsg 19195 isgim 19302 isga 19331 cntzfval 19360 isslw 19650 isirred 20445 rnghmval 20466 isrngim 20471 dfrhm2 20500 isrim0OLD 20507 isrim0 20509 issubrng 20573 issubrg 20599 rrgval 20719 issdrg 20811 abvfval 20833 lssset 20954 islmhm 21049 islmim 21084 islbs 21098 ocvfval 21707 isobs 21763 dsmmval 21777 islinds 21852 mplval 22032 mhpfval 22165 mplbaspropd 22259 dmatval 22519 scmatval 22531 cpmat 22736 cldval 23052 mretopd 23121 neifval 23128 ordtval 23218 ordtbas2 23220 ordtcnv 23230 ordtrest2 23233 cnfval 23262 cnpfval 23263 kgenval 23564 xkoval 23616 dfac14 23647 qtopval 23724 qtopval2 23725 hmeofval 23787 elmptrab 23856 fgval 23899 flimval 23992 utopval 24262 ucnval 24307 iscfilu 24318 ispsmet 24335 ismet 24354 isxmet 24355 blfvalps 24414 cncfval 24933 ishtpy 25023 isphtpy 25032 om1val 25082 cfilfval 25317 caufval 25328 cpnfval 25988 uc1pval 26199 mon1pval 26201 dchrval 27296 leftval 27920 rightval 27921 istrkgl 28484 israg 28723 iseqlg 28893 ttgval 28901 ttgvalOLD 28902 nbgrval 29371 vtxdgfval 29503 vtxdeqd 29513 1egrvtxdg1 29545 umgr2v2evd2 29563 wwlks 29868 wwlksn 29870 wspthsn 29881 wwlksnon 29884 wspthsnon 29885 iswspthsnon 29889 rusgrnumwwlklem 30003 clwwlk 30015 clwwlkn 30058 2clwwlk 30379 numclwlk1lem2 30402 numclwwlkovh0 30404 numclwwlkovq 30406 lnoval 30784 bloval 30813 hmoval 30842 mntoval 32955 tocycval 33101 fldgenval 33279 prmidlval 33430 mxidlval 33454 rprmval 33509 minplyval 33698 ordtprsuni 33865 sigagenval 34104 faeval 34210 ismbfm 34215 carsgval 34268 sitgval 34297 reprval 34587 erdszelem3 35161 erdsze 35170 kur14 35184 iscvm 35227 satf 35321 wlimeq12 35783 fwddifval 36126 poimirlem28 37608 istotbnd 37729 isbnd 37740 rngohomval 37924 rngoisoval 37937 idlval 37973 pridlval 37993 maxidlval 37999 igenval 38021 lshpset 38934 lflset 39015 pats 39241 llnset 39462 lplnset 39486 lvolset 39529 lineset 39695 pmapfval 39713 paddfval 39754 lhpset 39952 ldilfset 40065 ltrnfset 40074 ltrnset 40075 dilfsetN 40109 trnfsetN 40112 trnsetN 40113 diaffval 40987 diafval 40988 dicffval 41131 dochffval 41306 lpolsetN 41439 lcdfval 41545 lcdval 41546 mapdffval 41583 mapdfval 41584 prjcrvfval 42586 isnacs 42660 mzpclval 42681 k0004val 44112 fourierdlem2 46030 fourierdlem3 46031 etransclem12 46167 etransclem33 46188 caragenval 46414 smflimlem3 46694 fvmptrab 47207 iccpval 47289 clnbgrval 47696 isisubgr 47734 grtri 47791 assintopval 47928 dmatALTval 48129 lcoop 48140 lines 48465 rrxlines 48467 spheres 48480 |
Copyright terms: Public domain | W3C validator |