Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | rabeqdv 3420 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
3 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 3 | rabbidv 3415 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
5 | 2, 4 | eqtrd 2779 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 {crab 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 |
This theorem is referenced by: elfvmptrab1w 6910 elfvmptrab1 6911 fvmptrabfv 6915 elovmporab1w 7525 elovmporab1 7526 ovmpt3rab1 7536 suppval 7988 mpoxopoveq 8044 supeq123d 9218 phival 16477 dfphi2 16484 hashbcval 16712 imasval 17231 ismre 17308 mrisval 17348 isacs 17369 monfval 17453 ismon 17454 monpropd 17458 natfval 17671 isnat 17672 initoval 17717 termoval 17718 gsumvalx 18369 gsumpropd 18371 gsumress 18375 ismhm 18441 issubm 18451 issubg 18764 isnsg 18792 isgim 18887 isga 18906 cntzfval 18935 isslw 19222 isirred 19950 dfrhm2 19970 isrim0 19976 issubrg 20033 issdrg 20072 abvfval 20087 lssset 20204 islmhm 20298 islmim 20333 islbs 20347 rrgval 20567 ocvfval 20880 isobs 20936 dsmmval 20950 islinds 21025 mplval 21206 mhpfval 21338 mplbaspropd 21417 dmatval 21650 scmatval 21662 cpmat 21867 cldval 22183 mretopd 22252 neifval 22259 ordtval 22349 ordtbas2 22351 ordtcnv 22361 ordtrest2 22364 cnfval 22393 cnpfval 22394 kgenval 22695 xkoval 22747 dfac14 22778 qtopval 22855 qtopval2 22856 hmeofval 22918 elmptrab 22987 fgval 23030 flimval 23123 utopval 23393 ucnval 23438 iscfilu 23449 ispsmet 23466 ismet 23485 isxmet 23486 blfvalps 23545 cncfval 24060 ishtpy 24144 isphtpy 24153 om1val 24202 cfilfval 24437 caufval 24448 cpnfval 25105 uc1pval 25313 mon1pval 25315 dchrval 26391 istrkgl 26828 israg 27067 iseqlg 27237 ttgval 27245 ttgvalOLD 27246 nbgrval 27712 vtxdgfval 27843 vtxdeqd 27853 1egrvtxdg1 27885 umgr2v2evd2 27903 wwlks 28209 wwlksn 28211 wspthsn 28222 wwlksnon 28225 wspthsnon 28226 iswspthsnon 28230 rusgrnumwwlklem 28344 clwwlk 28356 clwwlkn 28399 2clwwlk 28720 numclwlk1lem2 28743 numclwwlkovh0 28745 numclwwlkovq 28747 lnoval 29123 bloval 29152 hmoval 29181 mntoval 31269 tocycval 31384 prmidlval 31621 mxidlval 31642 rprmval 31673 ordtprsuni 31878 sigagenval 32117 faeval 32223 ismbfm 32228 carsgval 32279 sitgval 32308 reprval 32599 erdszelem3 33164 erdsze 33173 kur14 33187 iscvm 33230 satf 33324 wlimeq12 33822 leftval 34056 rightval 34057 fwddifval 34473 poimirlem28 35814 istotbnd 35936 isbnd 35947 rngohomval 36131 rngoisoval 36144 idlval 36180 pridlval 36200 maxidlval 36206 igenval 36228 lshpset 36999 lflset 37080 pats 37306 llnset 37526 lplnset 37550 lvolset 37593 lineset 37759 pmapfval 37777 paddfval 37818 lhpset 38016 ldilfset 38129 ltrnfset 38138 ltrnset 38139 dilfsetN 38173 trnfsetN 38176 trnsetN 38177 diaffval 39051 diafval 39052 dicffval 39195 dochffval 39370 lpolsetN 39503 lcdfval 39609 lcdval 39610 mapdffval 39647 mapdfval 39648 prjcrvfval 40475 isnacs 40533 mzpclval 40554 k0004val 41767 fourierdlem2 43657 fourierdlem3 43658 etransclem12 43794 etransclem33 43815 caragenval 44038 smflimlem3 44318 fvmptrab 44795 iccpval 44878 ismgmhm 45348 issubmgm 45354 assintopval 45410 rnghmval 45460 isrngisom 45465 dmatALTval 45752 lcoop 45763 lines 46088 rrxlines 46090 spheres 46103 |
Copyright terms: Public domain | W3C validator |