MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbid Structured version   Visualization version   GIF version

Theorem rabbid 3451
Description: Version of rabbidv 3432 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
Hypotheses
Ref Expression
rabbid.n 𝑥𝜑
rabbid.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabbid (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbid
StepHypRef Expression
1 rabbid.n . 2 𝑥𝜑
2 rabbid.1 . . 3 (𝜑 → (𝜓𝜒))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3rabbida 3450 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wnf 1777  wcel 2098  {crab 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-rab 3425
This theorem is referenced by:  satfv1  34872  bj-rabeqbid  36302  bj-seex  36303
  Copyright terms: Public domain W3C validator