Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-seex | Structured version Visualization version GIF version |
Description: Version of seex 5513 with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
bj-seex.nf | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
bj-seex | ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5510 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V) | |
2 | bj-seex.nf | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
3 | 2 | nfeq2 2921 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
4 | breq2 5057 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐵)) | |
5 | 3, 4 | rabbid 3385 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} = {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵}) |
6 | 5 | eleq1d 2822 | . . 3 ⊢ (𝑦 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ↔ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V)) |
7 | 6 | rspccva 3536 | . 2 ⊢ ((∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
8 | 1, 7 | sylanb 584 | 1 ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Ⅎwnfc 2884 ∀wral 3061 {crab 3065 Vcvv 3408 class class class wbr 5053 Se wse 5507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-se 5510 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |