Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-seex Structured version   Visualization version   GIF version

Theorem bj-seex 35110
Description: Version of seex 5551 with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019.)
Hypothesis
Ref Expression
bj-seex.nf 𝑥𝐵
Assertion
Ref Expression
bj-seex ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem bj-seex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 5545 . 2 (𝑅 Se 𝐴 ↔ ∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V)
2 bj-seex.nf . . . . . 6 𝑥𝐵
32nfeq2 2924 . . . . 5 𝑥 𝑦 = 𝐵
4 breq2 5078 . . . . 5 (𝑦 = 𝐵 → (𝑥𝑅𝑦𝑥𝑅𝐵))
53, 4rabbid 3410 . . . 4 (𝑦 = 𝐵 → {𝑥𝐴𝑥𝑅𝑦} = {𝑥𝐴𝑥𝑅𝐵})
65eleq1d 2823 . . 3 (𝑦 = 𝐵 → ({𝑥𝐴𝑥𝑅𝑦} ∈ V ↔ {𝑥𝐴𝑥𝑅𝐵} ∈ V))
76rspccva 3560 . 2 ((∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V ∧ 𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
81, 7sylanb 581 1 ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  {crab 3068  Vcvv 3432   class class class wbr 5074   Se wse 5542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-se 5545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator