Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-seex Structured version   Visualization version   GIF version

Theorem bj-seex 34847
Description: Version of seex 5513 with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019.)
Hypothesis
Ref Expression
bj-seex.nf 𝑥𝐵
Assertion
Ref Expression
bj-seex ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem bj-seex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 5510 . 2 (𝑅 Se 𝐴 ↔ ∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V)
2 bj-seex.nf . . . . . 6 𝑥𝐵
32nfeq2 2921 . . . . 5 𝑥 𝑦 = 𝐵
4 breq2 5057 . . . . 5 (𝑦 = 𝐵 → (𝑥𝑅𝑦𝑥𝑅𝐵))
53, 4rabbid 3385 . . . 4 (𝑦 = 𝐵 → {𝑥𝐴𝑥𝑅𝑦} = {𝑥𝐴𝑥𝑅𝐵})
65eleq1d 2822 . . 3 (𝑦 = 𝐵 → ({𝑥𝐴𝑥𝑅𝑦} ∈ V ↔ {𝑥𝐴𝑥𝑅𝐵} ∈ V))
76rspccva 3536 . 2 ((∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V ∧ 𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
81, 7sylanb 584 1 ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wnfc 2884  wral 3061  {crab 3065  Vcvv 3408   class class class wbr 5053   Se wse 5507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-se 5510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator