Colors of
variables: wff
setvar class |
Syntax hints:
β wi 4 β wcel 2106
βcfv 6540 Scalarcsca 17196 DivRingcdr 20307
LModclmod 20463 LVecclvec 20705 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-ext 2703 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-lvec 20706 |
This theorem is referenced by: lveclmodd
20710 lsslvec
20711 lvecvs0or
20713 lssvs0or
20715 lvecvscan
20716 lvecvscan2
20717 lvecinv
20718 lspsnvs
20719 lspsneleq
20720 lspsncmp
20721 lspsnne1
20722 lspsnnecom
20724 lspabs2
20725 lspabs3
20726 lspsneq
20727 lspsnel4
20729 lspdisj
20730 lspdisjb
20731 lspdisj2
20732 lspfixed
20733 lspexch
20734 lspexchn1
20735 lspindpi
20737 lvecindp
20743 lvecindp2
20744 lsmcv
20746 lspsolv
20748 lssacsex
20749 lspsnat
20750 lsppratlem2
20753 lsppratlem3
20754 lsppratlem4
20755 lsppratlem6
20757 lspprat
20758 islbs2
20759 islbs3
20760 lbsacsbs
20761 lbsextlem2
20764 lbsextlem3
20765 lbsextlem4
20766 phllmod
21174 isphld
21198 islinds4
21381 lvecisfrlm
21389 cvsi
24637 0nellinds
32471 lindssn
32482 linds2eq
32485 lvecdim0i
32678 lssdimle
32680 tngdim
32686 matdim
32688 lbslsat
32689 lsatdim
32690 drngdimgt0
32691 lindsunlem
32697 lindsun
32698 lbsdiflsp0
32699 dimkerim
32700 qusdimsum
32701 fedgmullem1
32702 fedgmullem2
32703 fedgmul
32704 extdg1id
32730 ccfldextdgrr
32734 lindsadd
36469 lshpnelb
37842 lshpnel2N
37843 lshpdisj
37845 lshpcmp
37846 lsatcmp
37861 lsatcmp2
37862 lsatel
37863 lsatelbN
37864 lsatfixedN
37867 lsmcv2
37887 lsatcv0
37889 lsatcveq0
37890 lsat0cv
37891 lcvp
37898 lcv1
37899 lcv2
37900 lsatexch
37901 lsatnem0
37903 lsatexch1
37904 lsatcv0eq
37905 lsatcv1
37906 lsatcvatlem
37907 lsatcvat
37908 lsatcvat2
37909 lsatcvat3
37910 islshpcv
37911 l1cvpat
37912 l1cvat
37913 lfl1
37928 lkrsc
37955 lkrscss
37956 eqlkr
37957 eqlkr3
37959 lkrlsp
37960 lkrlsp3
37962 lkrshp
37963 lkrshp3
37964 lkrshpor
37965 lkrshp4
37966 lshpsmreu
37967 lshpkrlem1
37968 lshpkrlem4
37971 lshpkrlem5
37972 lshpkrlem6
37973 lshpkr
37975 lshpkrex
37976 lfl1dim
37979 lfl1dim2N
37980 lduallvec
38012 lduallkr3
38020 lkrpssN
38021 ldual1dim
38024 lkrss2N
38027 lkreqN
38028 lkrlspeqN
38029 dva0g
39886 dia1dim2
39921 dia1dimid
39922 dia2dimlem5
39927 dia2dimlem7
39929 dia2dimlem9
39931 dia2dimlem10
39932 dia2dimlem13
39935 dvhlmod
39969 diblsmopel
40030 lclkrlem2m
40378 lclkrlem2n
40379 lcfrlem1
40401 lcfrlem2
40402 lcfrlem3
40403 lcdlmod
40451 baerlem3lem1
40566 baerlem5alem1
40567 baerlem5blem1
40568 baerlem3lem2
40569 baerlem5alem2
40570 baerlem5blem2
40571 baerlem5amN
40575 baerlem5bmN
40576 baerlem5abmN
40577 mapdindp0
40578 mapdindp1
40579 mapdindp2
40580 mapdindp3
40581 mapdindp4
40582 lspindp5
40629 lvecgrp
41103 lvecring
41105 prjspersym
41345 prjsper
41346 prjspreln0
41347 prjspvs
41348 prjspeclsp
41350 0prjspn
41366 lincreslvec3
47116 isldepslvec2
47119 lindssnlvec
47120 lvecpsslmod
47141 |