![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lveclmod | Structured version Visualization version GIF version |
Description: A left vector space is a left module. (Contributed by NM, 9-Dec-2013.) |
Ref | Expression |
---|---|
lveclmod | ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | 1 | islvec 19463 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
3 | 2 | simplbi 493 | 1 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2164 ‘cfv 6123 Scalarcsca 16308 DivRingcdr 19103 LModclmod 19219 LVecclvec 19461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-iota 6086 df-fv 6131 df-lvec 19462 |
This theorem is referenced by: lsslvec 19466 lvecvs0or 19467 lssvs0or 19469 lvecvscan 19470 lvecvscan2 19471 lvecinv 19472 lspsnvs 19473 lspsneleq 19474 lspsncmp 19475 lspsnne1 19476 lspsnnecom 19478 lspabs2 19479 lspabs3 19480 lspsneq 19481 lspsnel4 19483 lspdisj 19484 lspdisjb 19485 lspdisj2 19486 lspfixed 19487 lspfixedOLD 19488 lspexch 19489 lspexchn1 19490 lspindpi 19492 lvecindp 19498 lvecindp2 19499 lsmcv 19501 lspsolv 19503 lssacsex 19504 lspsnat 19505 lsppratlem2 19509 lsppratlem3 19510 lsppratlem4 19511 lsppratlem6 19513 lspprat 19514 islbs2 19515 islbs3 19516 lbsacsbs 19517 lbsextlem2 19520 lbsextlem3 19521 lbsextlem4 19522 phllmod 20337 isphld 20361 islinds4 20541 lvecisfrlm 20549 cvsi 23299 lindsadd 33939 lshpnelb 35052 lshpnel2N 35053 lshpdisj 35055 lshpcmp 35056 lsatcmp 35071 lsatcmp2 35072 lsatel 35073 lsatelbN 35074 lsatfixedN 35077 lsmcv2 35097 lsatcv0 35099 lsatcveq0 35100 lsat0cv 35101 lcvp 35108 lcv1 35109 lcv2 35110 lsatexch 35111 lsatnem0 35113 lsatexch1 35114 lsatcv0eq 35115 lsatcv1 35116 lsatcvatlem 35117 lsatcvat 35118 lsatcvat2 35119 lsatcvat3 35120 islshpcv 35121 l1cvpat 35122 l1cvat 35123 lfl1 35138 lkrsc 35165 lkrscss 35166 eqlkr 35167 eqlkr3 35169 lkrlsp 35170 lkrlsp3 35172 lkrshp 35173 lkrshp3 35174 lkrshpor 35175 lkrshp4 35176 lshpsmreu 35177 lshpkrlem1 35178 lshpkrlem4 35181 lshpkrlem5 35182 lshpkrlem6 35183 lshpkr 35185 lshpkrex 35186 lfl1dim 35189 lfl1dim2N 35190 lduallvec 35222 lduallkr3 35230 lkrpssN 35231 ldual1dim 35234 lkrss2N 35237 lkreqN 35238 lkrlspeqN 35239 dva0g 37095 dia1dim2 37130 dia1dimid 37131 dia2dimlem5 37136 dia2dimlem7 37138 dia2dimlem9 37140 dia2dimlem10 37141 dia2dimlem13 37144 dvhlmod 37178 diblsmopel 37239 lclkrlem2m 37587 lclkrlem2n 37588 lcfrlem1 37610 lcfrlem2 37611 lcfrlem3 37612 lcdlmod 37660 baerlem3lem1 37775 baerlem5alem1 37776 baerlem5blem1 37777 baerlem3lem2 37778 baerlem5alem2 37779 baerlem5blem2 37780 baerlem5amN 37784 baerlem5bmN 37785 baerlem5abmN 37786 mapdindp0 37787 mapdindp1 37788 mapdindp2 37789 mapdindp3 37790 mapdindp4 37791 lspindp5 37838 lincreslvec3 43111 isldepslvec2 43114 lindssnlvec 43115 lvecpsslmod 43136 |
Copyright terms: Public domain | W3C validator |