Colors of
variables: wff
setvar class |
Syntax hints:
β wi 4 β wcel 2104
βcfv 6542 Scalarcsca 17204 DivRingcdr 20500
LModclmod 20614 LVecclvec 20857 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-ext 2701 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-lvec 20858 |
This theorem is referenced by: lveclmodd
20862 lsslvec
20864 lvecvs0or
20866 lssvs0or
20868 lvecvscan
20869 lvecvscan2
20870 lvecinv
20871 lspsnvs
20872 lspsneleq
20873 lspsncmp
20874 lspsnne1
20875 lspsnnecom
20877 lspabs2
20878 lspabs3
20879 lspsneq
20880 lspsnel4
20882 lspdisj
20883 lspdisjb
20884 lspdisj2
20885 lspfixed
20886 lspexch
20887 lspexchn1
20888 lspindpi
20890 lvecindp
20896 lvecindp2
20897 lsmcv
20899 lspsolv
20901 lssacsex
20902 lspsnat
20903 lsppratlem2
20906 lsppratlem3
20907 lsppratlem4
20908 lsppratlem6
20910 lspprat
20911 islbs2
20912 islbs3
20913 lbsacsbs
20914 lbsextlem2
20917 lbsextlem3
20918 lbsextlem4
20919 phllmod
21402 isphld
21426 islinds4
21609 lvecisfrlm
21617 cvsi
24877 0nellinds
32757 lindssn
32768 linds2eq
32771 lvecdim0i
32978 lssdimle
32980 tngdim
32986 matdim
32988 lbslsat
32989 lsatdim
32990 drngdimgt0
32991 lindsunlem
32997 lindsun
32998 lbsdiflsp0
32999 dimkerim
33000 qusdimsum
33001 fedgmullem1
33002 fedgmullem2
33003 fedgmul
33004 extdg1id
33030 ccfldextdgrr
33035 lindsadd
36784 lshpnelb
38157 lshpnel2N
38158 lshpdisj
38160 lshpcmp
38161 lsatcmp
38176 lsatcmp2
38177 lsatel
38178 lsatelbN
38179 lsatfixedN
38182 lsmcv2
38202 lsatcv0
38204 lsatcveq0
38205 lsat0cv
38206 lcvp
38213 lcv1
38214 lcv2
38215 lsatexch
38216 lsatnem0
38218 lsatexch1
38219 lsatcv0eq
38220 lsatcv1
38221 lsatcvatlem
38222 lsatcvat
38223 lsatcvat2
38224 lsatcvat3
38225 islshpcv
38226 l1cvpat
38227 l1cvat
38228 lfl1
38243 lkrsc
38270 lkrscss
38271 eqlkr
38272 eqlkr3
38274 lkrlsp
38275 lkrlsp3
38277 lkrshp
38278 lkrshp3
38279 lkrshpor
38280 lkrshp4
38281 lshpsmreu
38282 lshpkrlem1
38283 lshpkrlem4
38286 lshpkrlem5
38287 lshpkrlem6
38288 lshpkr
38290 lshpkrex
38291 lfl1dim
38294 lfl1dim2N
38295 lduallvec
38327 lduallkr3
38335 lkrpssN
38336 ldual1dim
38339 lkrss2N
38342 lkreqN
38343 lkrlspeqN
38344 dva0g
40201 dia1dim2
40236 dia1dimid
40237 dia2dimlem5
40242 dia2dimlem7
40244 dia2dimlem9
40246 dia2dimlem10
40247 dia2dimlem13
40250 dvhlmod
40284 diblsmopel
40345 lclkrlem2m
40693 lclkrlem2n
40694 lcfrlem1
40716 lcfrlem2
40717 lcfrlem3
40718 lcdlmod
40766 baerlem3lem1
40881 baerlem5alem1
40882 baerlem5blem1
40883 baerlem3lem2
40884 baerlem5alem2
40885 baerlem5blem2
40886 baerlem5amN
40890 baerlem5bmN
40891 baerlem5abmN
40892 mapdindp0
40893 mapdindp1
40894 mapdindp2
40895 mapdindp3
40896 mapdindp4
40897 lspindp5
40944 lvecgrp
41409 lvecring
41410 prjspersym
41651 prjsper
41652 prjspreln0
41653 prjspvs
41654 prjspeclsp
41656 0prjspn
41672 lincreslvec3
47250 isldepslvec2
47253 lindssnlvec
47254 lvecpsslmod
47275 |