| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vtocl | Structured version Visualization version GIF version | ||
| Description: Remove dependency on ax-ext 2707, df-clab 2714 and df-cleq 2728 (and df-sb 2065 and df-v 3481) from vtocl 3557. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vtocl.s | ⊢ 𝐴 ∈ 𝑉 |
| bj-vtocl.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| bj-vtocl.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| bj-vtocl | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | bj-vtocl.s | . 2 ⊢ 𝐴 ∈ 𝑉 | |
| 3 | bj-vtocl.maj | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | bj-vtocl.min | . 2 ⊢ 𝜑 | |
| 5 | 1, 2, 3, 4 | bj-vtoclf 36894 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2815 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |