Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vtoclg1f1 Structured version   Visualization version   GIF version

Theorem bj-vtoclg1f1 36318
Description: The FOL content of vtoclg1f 3554 (hence not using ax-ext 2698, df-cleq 2719, df-nfc 2880, df-v 3471). Note the weakened "major" hypothesis and the disjoint variable condition between 𝑥 and 𝐴 (needed since the nonfreeness quantifier for classes is not available without ax-ext 2698; as a byproduct, this dispenses with ax-11 2147 and ax-13 2366). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-vtoclg1f1.nf 𝑥𝜓
bj-vtoclg1f1.maj (𝑥 = 𝐴 → (𝜑𝜓))
bj-vtoclg1f1.min 𝜑
Assertion
Ref Expression
bj-vtoclg1f1 (∃𝑦 𝑦 = 𝐴𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem bj-vtoclg1f1
StepHypRef Expression
1 bj-denotes 36272 . 2 (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴)
2 bj-vtoclg1f1.nf . . 3 𝑥𝜓
3 bj-vtoclg1f1.maj . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 bj-vtoclg1f1.min . . 3 𝜑
52, 3, 4bj-exlimmpi 36313 . 2 (∃𝑥 𝑥 = 𝐴𝜓)
61, 5sylbi 216 1 (∃𝑦 𝑦 = 𝐴𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wex 1774  wnf 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-12 2164
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-clel 2805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator