| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version | ||
| Description: Version of vtoclgf 3553 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2142 and ax-11 2158. (Contributed by BJ, 1-May-2019.) |
| Ref | Expression |
|---|---|
| vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
| vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg1f.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2817 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
| 4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbii 233 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 6 | 2, 5 | exlimi 2218 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-clel 2810 |
| This theorem is referenced by: ceqsexg 3637 mob 3705 opeliunxp2 5823 fvopab5 7024 opeliunxp2f 8214 fprodsplit1f 16011 cnextfvval 24008 dvfsumlem2 25990 dvfsumlem2OLD 25991 dvfsumlem4 25993 bnj981 34986 dmrelrnrel 45217 fmul01 45576 fmuldfeq 45579 fmul01lt1lem1 45580 fprodcnlem 45595 stoweidlem3 45999 stoweidlem26 46022 stoweidlem31 46027 stoweidlem43 46039 stoweidlem51 46047 fourierdlem86 46188 fourierdlem89 46191 fourierdlem91 46193 sge0f1o 46378 salpreimagelt 46703 salpreimalegt 46705 |
| Copyright terms: Public domain | W3C validator |