![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version |
Description: Version of vtoclgf 3557 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2129 and ax-11 2146. (Contributed by BJ, 1-May-2019.) |
Ref | Expression |
---|---|
vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg1f.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2811 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | mpbii 232 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
6 | 2, 5 | exlimi 2205 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∃wex 1773 Ⅎwnf 1777 ∈ wcel 2098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-clel 2806 |
This theorem is referenced by: ceqsexg 3641 elabgOLD 3668 mob 3714 opeliunxp2 5845 fvopab5 7043 opeliunxp2f 8224 fprodsplit1f 15976 cnextfvval 23997 dvfsumlem2 25989 dvfsumlem2OLD 25990 dvfsumlem4 25992 bnj981 34622 dmrelrnrel 44647 fmul01 45015 fmuldfeq 45018 fmul01lt1lem1 45019 fprodcnlem 45034 stoweidlem3 45438 stoweidlem26 45461 stoweidlem31 45466 stoweidlem43 45478 stoweidlem51 45486 fourierdlem86 45627 fourierdlem89 45630 fourierdlem91 45632 salpreimagelt 46142 salpreimalegt 46144 |
Copyright terms: Public domain | W3C validator |