| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version | ||
| Description: Version of vtoclgf 3532 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2142 and ax-11 2158. (Contributed by BJ, 1-May-2019.) |
| Ref | Expression |
|---|---|
| vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
| vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg1f.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2810 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
| 4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbii 233 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 6 | 2, 5 | exlimi 2218 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: ceqsexg 3616 mob 3685 opeliunxp2 5792 fvopab5 6983 opeliunxp2f 8166 fprodsplit1f 15932 cnextfvval 23985 dvfsumlem2 25966 dvfsumlem2OLD 25967 dvfsumlem4 25969 bnj981 34933 dmrelrnrel 45213 fmul01 45571 fmuldfeq 45574 fmul01lt1lem1 45575 fprodcnlem 45590 stoweidlem3 45994 stoweidlem26 46017 stoweidlem31 46022 stoweidlem43 46034 stoweidlem51 46042 fourierdlem86 46183 fourierdlem89 46186 fourierdlem91 46188 sge0f1o 46373 salpreimagelt 46698 salpreimalegt 46700 |
| Copyright terms: Public domain | W3C validator |