![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version |
Description: Version of vtoclgf 3581 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2141 and ax-11 2158. (Contributed by BJ, 1-May-2019.) |
Ref | Expression |
---|---|
vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg1f.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2826 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | mpbii 233 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
6 | 2, 5 | exlimi 2218 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1777 Ⅎwnf 1781 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-clel 2819 |
This theorem is referenced by: ceqsexg 3666 elabgOLD 3691 mob 3739 opeliunxp2 5863 fvopab5 7062 opeliunxp2f 8251 fprodsplit1f 16038 cnextfvval 24094 dvfsumlem2 26087 dvfsumlem2OLD 26088 dvfsumlem4 26090 bnj981 34926 dmrelrnrel 45133 fmul01 45501 fmuldfeq 45504 fmul01lt1lem1 45505 fprodcnlem 45520 stoweidlem3 45924 stoweidlem26 45947 stoweidlem31 45952 stoweidlem43 45964 stoweidlem51 45972 fourierdlem86 46113 fourierdlem89 46116 fourierdlem91 46118 salpreimagelt 46628 salpreimalegt 46630 |
Copyright terms: Public domain | W3C validator |