MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclg1f Structured version   Visualization version   GIF version

Theorem vtoclg1f 3536
Description: Version of vtoclgf 3535 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2142 and ax-11 2158. (Contributed by BJ, 1-May-2019.)
Hypotheses
Ref Expression
vtoclg1f.nf 𝑥𝜓
vtoclg1f.maj (𝑥 = 𝐴 → (𝜑𝜓))
vtoclg1f.min 𝜑
Assertion
Ref Expression
vtoclg1f (𝐴𝑉𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem vtoclg1f
StepHypRef Expression
1 elisset 2810 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtoclg1f.nf . . 3 𝑥𝜓
3 vtoclg1f.min . . . 4 𝜑
4 vtoclg1f.maj . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbii 233 . . 3 (𝑥 = 𝐴𝜓)
62, 5exlimi 2218 . 2 (∃𝑥 𝑥 = 𝐴𝜓)
71, 6syl 17 1 (𝐴𝑉𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wnf 1783  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-clel 2803
This theorem is referenced by:  ceqsexg  3619  mob  3688  opeliunxp2  5802  fvopab5  7001  opeliunxp2f  8189  fprodsplit1f  15956  cnextfvval  23952  dvfsumlem2  25933  dvfsumlem2OLD  25934  dvfsumlem4  25936  bnj981  34940  dmrelrnrel  45220  fmul01  45578  fmuldfeq  45581  fmul01lt1lem1  45582  fprodcnlem  45597  stoweidlem3  46001  stoweidlem26  46024  stoweidlem31  46029  stoweidlem43  46041  stoweidlem51  46049  fourierdlem86  46190  fourierdlem89  46193  fourierdlem91  46195  sge0f1o  46380  salpreimagelt  46705  salpreimalegt  46707
  Copyright terms: Public domain W3C validator