Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version |
Description: Version of vtoclgf 3493 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-11 2156 and ax-13 2372. (Contributed by BJ, 1-May-2019.) |
Ref | Expression |
---|---|
vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg1f.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2820 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | mpbii 232 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
6 | 2, 5 | exlimi 2213 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: vtoclgOLD 3496 ceqsexg 3575 elabgOLD 3601 mob 3647 opeliunxp2 5736 fvopab5 6889 opeliunxp2f 7997 fprodsplit1f 15628 cnextfvval 23124 dvfsumlem2 25096 dvfsumlem4 25098 bnj981 32830 dmrelrnrel 42654 fmul01 43011 fmuldfeq 43014 fmul01lt1lem1 43015 stoweidlem3 43434 stoweidlem26 43457 stoweidlem31 43462 stoweidlem43 43474 stoweidlem51 43482 fourierdlem86 43623 fourierdlem89 43626 fourierdlem91 43628 salpreimagelt 44132 salpreimalegt 44134 |
Copyright terms: Public domain | W3C validator |