| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version | ||
| Description: Version of vtoclgf 3535 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2142 and ax-11 2158. (Contributed by BJ, 1-May-2019.) |
| Ref | Expression |
|---|---|
| vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
| vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg1f.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2810 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
| 4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbii 233 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 6 | 2, 5 | exlimi 2218 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: ceqsexg 3619 mob 3688 opeliunxp2 5802 fvopab5 7001 opeliunxp2f 8189 fprodsplit1f 15956 cnextfvval 23952 dvfsumlem2 25933 dvfsumlem2OLD 25934 dvfsumlem4 25936 bnj981 34940 dmrelrnrel 45220 fmul01 45578 fmuldfeq 45581 fmul01lt1lem1 45582 fprodcnlem 45597 stoweidlem3 46001 stoweidlem26 46024 stoweidlem31 46029 stoweidlem43 46041 stoweidlem51 46049 fourierdlem86 46190 fourierdlem89 46193 fourierdlem91 46195 sge0f1o 46380 salpreimagelt 46705 salpreimalegt 46707 |
| Copyright terms: Public domain | W3C validator |