![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version |
Description: Version of vtoclgf 3569 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2139 and ax-11 2155. (Contributed by BJ, 1-May-2019.) |
Ref | Expression |
---|---|
vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg1f.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2821 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | mpbii 233 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
6 | 2, 5 | exlimi 2215 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1776 Ⅎwnf 1780 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-clel 2814 |
This theorem is referenced by: ceqsexg 3653 elabgOLD 3678 mob 3726 opeliunxp2 5852 fvopab5 7049 opeliunxp2f 8234 fprodsplit1f 16023 cnextfvval 24089 dvfsumlem2 26082 dvfsumlem2OLD 26083 dvfsumlem4 26085 bnj981 34943 dmrelrnrel 45169 fmul01 45536 fmuldfeq 45539 fmul01lt1lem1 45540 fprodcnlem 45555 stoweidlem3 45959 stoweidlem26 45982 stoweidlem31 45987 stoweidlem43 45999 stoweidlem51 46007 fourierdlem86 46148 fourierdlem89 46151 fourierdlem91 46153 sge0f1o 46338 salpreimagelt 46663 salpreimalegt 46665 |
Copyright terms: Public domain | W3C validator |