MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclg1f Structured version   Visualization version   GIF version

Theorem vtoclg1f 3557
Description: Version of vtoclgf 3556 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2135 and ax-11 2152. (Contributed by BJ, 1-May-2019.)
Hypotheses
Ref Expression
vtoclg1f.nf 𝑥𝜓
vtoclg1f.maj (𝑥 = 𝐴 → (𝜑𝜓))
vtoclg1f.min 𝜑
Assertion
Ref Expression
vtoclg1f (𝐴𝑉𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem vtoclg1f
StepHypRef Expression
1 elisset 2813 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtoclg1f.nf . . 3 𝑥𝜓
3 vtoclg1f.min . . . 4 𝜑
4 vtoclg1f.maj . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbii 232 . . 3 (𝑥 = 𝐴𝜓)
62, 5exlimi 2208 . 2 (∃𝑥 𝑥 = 𝐴𝜓)
71, 6syl 17 1 (𝐴𝑉𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wex 1779  wnf 1783  wcel 2104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-clel 2808
This theorem is referenced by:  vtoclgOLDOLD  3559  ceqsexg  3640  elabgOLD  3666  mob  3712  opeliunxp2  5837  fvopab5  7029  opeliunxp2f  8197  fprodsplit1f  15938  cnextfvval  23789  dvfsumlem2  25779  dvfsumlem4  25781  bnj981  34259  gg-dvfsumlem2  35469  dmrelrnrel  44223  fmul01  44594  fmuldfeq  44597  fmul01lt1lem1  44598  stoweidlem3  45017  stoweidlem26  45040  stoweidlem31  45045  stoweidlem43  45057  stoweidlem51  45065  fourierdlem86  45206  fourierdlem89  45209  fourierdlem91  45211  salpreimagelt  45721  salpreimalegt  45723
  Copyright terms: Public domain W3C validator