MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclg1f Structured version   Visualization version   GIF version

Theorem vtoclg1f 3553
Description: Version of vtoclgf 3552 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2129 and ax-11 2146. (Contributed by BJ, 1-May-2019.)
Hypotheses
Ref Expression
vtoclg1f.nf 𝑥𝜓
vtoclg1f.maj (𝑥 = 𝐴 → (𝜑𝜓))
vtoclg1f.min 𝜑
Assertion
Ref Expression
vtoclg1f (𝐴𝑉𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem vtoclg1f
StepHypRef Expression
1 elisset 2809 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtoclg1f.nf . . 3 𝑥𝜓
3 vtoclg1f.min . . . 4 𝜑
4 vtoclg1f.maj . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbii 232 . . 3 (𝑥 = 𝐴𝜓)
62, 5exlimi 2202 . 2 (∃𝑥 𝑥 = 𝐴𝜓)
71, 6syl 17 1 (𝐴𝑉𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wex 1773  wnf 1777  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-clel 2804
This theorem is referenced by:  ceqsexg  3636  elabgOLD  3662  mob  3708  opeliunxp2  5832  fvopab5  7024  opeliunxp2f  8196  fprodsplit1f  15940  cnextfvval  23924  dvfsumlem2  25916  dvfsumlem2OLD  25917  dvfsumlem4  25919  bnj981  34490  dmrelrnrel  44494  fmul01  44865  fmuldfeq  44868  fmul01lt1lem1  44869  fprodcnlem  44884  stoweidlem3  45288  stoweidlem26  45311  stoweidlem31  45316  stoweidlem43  45328  stoweidlem51  45336  fourierdlem86  45477  fourierdlem89  45480  fourierdlem91  45482  salpreimagelt  45992  salpreimalegt  45994
  Copyright terms: Public domain W3C validator