![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version |
Description: Version of vtoclgf 3556 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2135 and ax-11 2152. (Contributed by BJ, 1-May-2019.) |
Ref | Expression |
---|---|
vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg1f.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2813 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | mpbii 232 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
6 | 2, 5 | exlimi 2208 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-clel 2808 |
This theorem is referenced by: vtoclgOLDOLD 3559 ceqsexg 3640 elabgOLD 3666 mob 3712 opeliunxp2 5837 fvopab5 7029 opeliunxp2f 8197 fprodsplit1f 15938 cnextfvval 23789 dvfsumlem2 25779 dvfsumlem4 25781 bnj981 34259 gg-dvfsumlem2 35469 dmrelrnrel 44223 fmul01 44594 fmuldfeq 44597 fmul01lt1lem1 44598 stoweidlem3 45017 stoweidlem26 45040 stoweidlem31 45045 stoweidlem43 45057 stoweidlem51 45065 fourierdlem86 45206 fourierdlem89 45209 fourierdlem91 45211 salpreimagelt 45721 salpreimalegt 45723 |
Copyright terms: Public domain | W3C validator |