| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version | ||
| Description: Version of vtoclgf 3521 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2144 and ax-11 2160. (Contributed by BJ, 1-May-2019.) |
| Ref | Expression |
|---|---|
| vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
| vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg1f.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2813 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
| 4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbii 233 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 6 | 2, 5 | exlimi 2220 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: ceqsexg 3603 mob 3671 opeliunxp2 5777 fvopab5 6962 opeliunxp2f 8140 fprodsplit1f 15897 cnextfvval 23980 dvfsumlem2 25960 dvfsumlem2OLD 25961 dvfsumlem4 25963 bnj981 34962 dmrelrnrel 45322 fmul01 45679 fmuldfeq 45682 fmul01lt1lem1 45683 fprodcnlem 45698 stoweidlem3 46100 stoweidlem26 46123 stoweidlem31 46128 stoweidlem43 46140 stoweidlem51 46148 fourierdlem86 46289 fourierdlem89 46292 fourierdlem91 46294 sge0f1o 46479 salpreimagelt 46804 salpreimalegt 46806 |
| Copyright terms: Public domain | W3C validator |