| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version | ||
| Description: Version of vtoclgf 3538 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2142 and ax-11 2158. (Contributed by BJ, 1-May-2019.) |
| Ref | Expression |
|---|---|
| vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
| vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg1f.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2811 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg1f.min | . . . 4 ⊢ 𝜑 | |
| 4 | vtoclg1f.maj | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbii 233 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 6 | 2, 5 | exlimi 2218 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-clel 2804 |
| This theorem is referenced by: ceqsexg 3622 mob 3691 opeliunxp2 5805 fvopab5 7004 opeliunxp2f 8192 fprodsplit1f 15963 cnextfvval 23959 dvfsumlem2 25940 dvfsumlem2OLD 25941 dvfsumlem4 25943 bnj981 34947 dmrelrnrel 45227 fmul01 45585 fmuldfeq 45588 fmul01lt1lem1 45589 fprodcnlem 45604 stoweidlem3 46008 stoweidlem26 46031 stoweidlem31 46036 stoweidlem43 46048 stoweidlem51 46056 fourierdlem86 46197 fourierdlem89 46200 fourierdlem91 46202 sge0f1o 46387 salpreimagelt 46712 salpreimalegt 46714 |
| Copyright terms: Public domain | W3C validator |