MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclg1f Structured version   Visualization version   GIF version

Theorem vtoclg1f 3539
Description: Version of vtoclgf 3538 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2142 and ax-11 2158. (Contributed by BJ, 1-May-2019.)
Hypotheses
Ref Expression
vtoclg1f.nf 𝑥𝜓
vtoclg1f.maj (𝑥 = 𝐴 → (𝜑𝜓))
vtoclg1f.min 𝜑
Assertion
Ref Expression
vtoclg1f (𝐴𝑉𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem vtoclg1f
StepHypRef Expression
1 elisset 2811 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtoclg1f.nf . . 3 𝑥𝜓
3 vtoclg1f.min . . . 4 𝜑
4 vtoclg1f.maj . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbii 233 . . 3 (𝑥 = 𝐴𝜓)
62, 5exlimi 2218 . 2 (∃𝑥 𝑥 = 𝐴𝜓)
71, 6syl 17 1 (𝐴𝑉𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wnf 1783  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-clel 2804
This theorem is referenced by:  ceqsexg  3622  mob  3691  opeliunxp2  5805  fvopab5  7004  opeliunxp2f  8192  fprodsplit1f  15963  cnextfvval  23959  dvfsumlem2  25940  dvfsumlem2OLD  25941  dvfsumlem4  25943  bnj981  34947  dmrelrnrel  45227  fmul01  45585  fmuldfeq  45588  fmul01lt1lem1  45589  fprodcnlem  45604  stoweidlem3  46008  stoweidlem26  46031  stoweidlem31  46036  stoweidlem43  46048  stoweidlem51  46056  fourierdlem86  46197  fourierdlem89  46200  fourierdlem91  46202  sge0f1o  46387  salpreimagelt  46712  salpreimalegt  46714
  Copyright terms: Public domain W3C validator