MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclg1f Structured version   Visualization version   GIF version

Theorem vtoclg1f 3470
Description: Version of vtoclgf 3469 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-11 2161 and ax-13 2371. (Contributed by BJ, 1-May-2019.)
Hypotheses
Ref Expression
vtoclg1f.nf 𝑥𝜓
vtoclg1f.maj (𝑥 = 𝐴 → (𝜑𝜓))
vtoclg1f.min 𝜑
Assertion
Ref Expression
vtoclg1f (𝐴𝑉𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem vtoclg1f
StepHypRef Expression
1 elisset 2814 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtoclg1f.nf . . 3 𝑥𝜓
3 vtoclg1f.min . . . 4 𝜑
4 vtoclg1f.maj . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbii 236 . . 3 (𝑥 = 𝐴𝜓)
62, 5exlimi 2218 . 2 (∃𝑥 𝑥 = 𝐴𝜓)
71, 6syl 17 1 (𝐴𝑉𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1542  wex 1786  wnf 1790  wcel 2113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-12 2178
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-clel 2811
This theorem is referenced by:  vtoclgOLD  3472  ceqsexg  3550  elabg  3573  mob  3617  opeliunxp2  5682  fvopab5  6808  opeliunxp2f  7906  fprodsplit1f  15437  cnextfvval  22817  dvfsumlem2  24779  dvfsumlem4  24781  bnj981  32501  dmrelrnrel  42295  fmul01  42655  fmuldfeq  42658  fmul01lt1lem1  42659  stoweidlem3  43078  stoweidlem26  43101  stoweidlem31  43106  stoweidlem43  43118  stoweidlem51  43126  fourierdlem86  43267  fourierdlem89  43270  fourierdlem91  43272  salpreimagelt  43776  salpreimalegt  43778
  Copyright terms: Public domain W3C validator