Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1020 Structured version   Visualization version   GIF version

Theorem bnj1020 32845
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1020.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1020.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1020.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1020.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
bnj1020.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj1020.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj1020.7 (𝜑′[𝑝 / 𝑛]𝜑)
bnj1020.8 (𝜓′[𝑝 / 𝑛]𝜓)
bnj1020.9 (𝜒′[𝑝 / 𝑛]𝜒)
bnj1020.10 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj1020.11 (𝜓″[𝐺 / 𝑓]𝜓′)
bnj1020.12 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj1020.13 𝐷 = (ω ∖ {∅})
bnj1020.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1020.15 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj1020.16 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj1020.26 (𝜒″ ↔ (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))
Assertion
Ref Expression
bnj1020 ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐴,𝑝,𝑓,𝑖,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑖,𝐺,𝑝   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑅,𝑝   𝑓,𝑋,𝑖,𝑛,𝑦   𝜒,𝑝   𝜂,𝑝   𝜑,𝑖   𝜃,𝑝
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛)   𝜃(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛)   𝜏(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑧)   𝐵(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑧,𝑚,𝑝)   𝑅(𝑧)   𝐺(𝑦,𝑧,𝑓,𝑚,𝑛)   𝑋(𝑧,𝑚,𝑝)   𝜑′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj1020
StepHypRef Expression
1 bnj1019 32659 . . 3 (∃𝑝(𝜃𝜒𝜏𝜂) ↔ (𝜃𝜒𝜂 ∧ ∃𝑝𝜏))
2 bnj1020.1 . . . . 5 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3 bnj1020.2 . . . . 5 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj1020.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
5 bnj1020.4 . . . . 5 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
6 bnj1020.5 . . . . 5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
7 bnj1020.6 . . . . 5 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
8 bnj1020.7 . . . . 5 (𝜑′[𝑝 / 𝑛]𝜑)
9 bnj1020.8 . . . . 5 (𝜓′[𝑝 / 𝑛]𝜓)
10 bnj1020.9 . . . . 5 (𝜒′[𝑝 / 𝑛]𝜒)
11 bnj1020.10 . . . . 5 (𝜑″[𝐺 / 𝑓]𝜑′)
12 bnj1020.11 . . . . 5 (𝜓″[𝐺 / 𝑓]𝜓′)
13 bnj1020.12 . . . . 5 (𝜒″[𝐺 / 𝑓]𝜒′)
14 bnj1020.13 . . . . 5 𝐷 = (ω ∖ {∅})
15 bnj1020.15 . . . . 5 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
16 bnj1020.16 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
17 bnj1020.14 . . . . . . 7 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
182, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 15, 16bnj998 32837 . . . . . 6 ((𝜃𝜒𝜏𝜂) → 𝜒″)
194, 6, 7, 14, 18bnj1001 32839 . . . . 5 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19bnj1006 32840 . . . 4 ((𝜃𝜒𝜏𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
2120exlimiv 1934 . . 3 (∃𝑝(𝜃𝜒𝜏𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
221, 21sylbir 234 . 2 ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
23 bnj1020.26 . . 3 (𝜒″ ↔ (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))
242, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 15, 16, 23, 18, 19bnj1018 32844 . 2 ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → (𝐺‘suc 𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
2522, 24sstrd 3927 1 ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  [wsbc 3711  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558  cop 4564   ciun 4921  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  w-bnj17 32565   predc-bnj14 32567   FrSe w-bnj15 32571   trClc-bnj18 32573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-bnj17 32566  df-bnj14 32568  df-bnj13 32570  df-bnj15 32572  df-bnj18 32574
This theorem is referenced by:  bnj907  32847
  Copyright terms: Public domain W3C validator