Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1020 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1020.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj1020.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1020.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1020.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
bnj1020.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj1020.6 | ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
bnj1020.7 | ⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) |
bnj1020.8 | ⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) |
bnj1020.9 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
bnj1020.10 | ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) |
bnj1020.11 | ⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) |
bnj1020.12 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
bnj1020.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1020.14 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj1020.15 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
bnj1020.16 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
bnj1020.26 | ⊢ (𝜒″ ↔ (𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″)) |
Ref | Expression |
---|---|
bnj1020 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1019 32759 | . . 3 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) | |
2 | bnj1020.1 | . . . . 5 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
3 | bnj1020.2 | . . . . 5 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
4 | bnj1020.3 | . . . . 5 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
5 | bnj1020.4 | . . . . 5 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) | |
6 | bnj1020.5 | . . . . 5 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
7 | bnj1020.6 | . . . . 5 ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
8 | bnj1020.7 | . . . . 5 ⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) | |
9 | bnj1020.8 | . . . . 5 ⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) | |
10 | bnj1020.9 | . . . . 5 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
11 | bnj1020.10 | . . . . 5 ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) | |
12 | bnj1020.11 | . . . . 5 ⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) | |
13 | bnj1020.12 | . . . . 5 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
14 | bnj1020.13 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
15 | bnj1020.15 | . . . . 5 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
16 | bnj1020.16 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
17 | bnj1020.14 | . . . . . . 7 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
18 | 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 15, 16 | bnj998 32937 | . . . . . 6 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
19 | 4, 6, 7, 14, 18 | bnj1001 32939 | . . . . 5 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
20 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19 | bnj1006 32940 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖)) |
21 | 20 | exlimiv 1933 | . . 3 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖)) |
22 | 1, 21 | sylbir 234 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖)) |
23 | bnj1020.26 | . . 3 ⊢ (𝜒″ ↔ (𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″)) | |
24 | 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 15, 16, 23, 18, 19 | bnj1018 32944 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → (𝐺‘suc 𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
25 | 22, 24 | sstrd 3931 | 1 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 [wsbc 3716 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 {csn 4561 〈cop 4567 ∪ ciun 4924 suc csuc 6268 Fn wfn 6428 ‘cfv 6433 ωcom 7712 ∧ w-bnj17 32665 predc-bnj14 32667 FrSe w-bnj15 32671 trClc-bnj18 32673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-om 7713 df-bnj17 32666 df-bnj14 32668 df-bnj13 32670 df-bnj15 32672 df-bnj18 32674 |
This theorem is referenced by: bnj907 32947 |
Copyright terms: Public domain | W3C validator |