Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1020 Structured version   Visualization version   GIF version

Theorem bnj1020 34948
Description: Technical lemma for bnj69 34993. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1020.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1020.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1020.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1020.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
bnj1020.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj1020.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj1020.7 (𝜑′[𝑝 / 𝑛]𝜑)
bnj1020.8 (𝜓′[𝑝 / 𝑛]𝜓)
bnj1020.9 (𝜒′[𝑝 / 𝑛]𝜒)
bnj1020.10 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj1020.11 (𝜓″[𝐺 / 𝑓]𝜓′)
bnj1020.12 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj1020.13 𝐷 = (ω ∖ {∅})
bnj1020.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1020.15 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj1020.16 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj1020.26 (𝜒″ ↔ (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))
Assertion
Ref Expression
bnj1020 ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐴,𝑝,𝑓,𝑖,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑖,𝐺,𝑝   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑅,𝑝   𝑓,𝑋,𝑖,𝑛,𝑦   𝜒,𝑝   𝜂,𝑝   𝜑,𝑖   𝜃,𝑝
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛)   𝜃(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛)   𝜏(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑧)   𝐵(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑧,𝑚,𝑝)   𝑅(𝑧)   𝐺(𝑦,𝑧,𝑓,𝑚,𝑛)   𝑋(𝑧,𝑚,𝑝)   𝜑′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj1020
StepHypRef Expression
1 bnj1019 34762 . . 3 (∃𝑝(𝜃𝜒𝜏𝜂) ↔ (𝜃𝜒𝜂 ∧ ∃𝑝𝜏))
2 bnj1020.1 . . . . 5 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3 bnj1020.2 . . . . 5 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj1020.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
5 bnj1020.4 . . . . 5 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
6 bnj1020.5 . . . . 5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
7 bnj1020.6 . . . . 5 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
8 bnj1020.7 . . . . 5 (𝜑′[𝑝 / 𝑛]𝜑)
9 bnj1020.8 . . . . 5 (𝜓′[𝑝 / 𝑛]𝜓)
10 bnj1020.9 . . . . 5 (𝜒′[𝑝 / 𝑛]𝜒)
11 bnj1020.10 . . . . 5 (𝜑″[𝐺 / 𝑓]𝜑′)
12 bnj1020.11 . . . . 5 (𝜓″[𝐺 / 𝑓]𝜓′)
13 bnj1020.12 . . . . 5 (𝜒″[𝐺 / 𝑓]𝜒′)
14 bnj1020.13 . . . . 5 𝐷 = (ω ∖ {∅})
15 bnj1020.15 . . . . 5 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
16 bnj1020.16 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
17 bnj1020.14 . . . . . . 7 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
182, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 15, 16bnj998 34940 . . . . . 6 ((𝜃𝜒𝜏𝜂) → 𝜒″)
194, 6, 7, 14, 18bnj1001 34942 . . . . 5 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19bnj1006 34943 . . . 4 ((𝜃𝜒𝜏𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
2120exlimiv 1930 . . 3 (∃𝑝(𝜃𝜒𝜏𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
221, 21sylbir 235 . 2 ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
23 bnj1020.26 . . 3 (𝜒″ ↔ (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))
242, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 15, 16, 23, 18, 19bnj1018 34947 . 2 ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → (𝐺‘suc 𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
2522, 24sstrd 3954 1 ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  [wsbc 3750  cdif 3908  cun 3909  wss 3911  c0 4292  {csn 4585  cop 4591   ciun 4951  suc csuc 6322   Fn wfn 6494  cfv 6499  ωcom 7822  w-bnj17 34669   predc-bnj14 34671   FrSe w-bnj15 34675   trClc-bnj18 34677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-reg 9521
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-om 7823  df-bnj17 34670  df-bnj14 34672  df-bnj13 34674  df-bnj15 34676  df-bnj18 34678
This theorem is referenced by:  bnj907  34950
  Copyright terms: Public domain W3C validator