|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj982 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj982.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| bnj982.2 | ⊢ (𝜓 → ∀𝑥𝜓) | 
| bnj982.3 | ⊢ (𝜒 → ∀𝑥𝜒) | 
| bnj982.4 | ⊢ (𝜃 → ∀𝑥𝜃) | 
| Ref | Expression | 
|---|---|
| bnj982 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-bnj17 34702 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | bnj982.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | bnj982.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | bnj982.3 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 5 | 2, 3, 4 | hb3an 2300 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| 6 | bnj982.4 | . . 3 ⊢ (𝜃 → ∀𝑥𝜃) | |
| 7 | 5, 6 | hban 2299 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → ∀𝑥((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | 
| 8 | 1, 7 | hbxfrbi 1824 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1537 ∧ w-bnj17 34701 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-bnj17 34702 | 
| This theorem is referenced by: bnj1096 34797 bnj1311 35039 bnj1445 35059 | 
| Copyright terms: Public domain | W3C validator |