| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1101 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1101.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
| bnj1101.2 | ⊢ (𝜒 → 𝜑) |
| Ref | Expression |
|---|---|
| bnj1101 | ⊢ ∃𝑥(𝜒 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1101.1 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) | |
| 2 | pm3.42 493 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜒 ∧ 𝜑) → 𝜓)) | |
| 3 | 1, 2 | bnj101 34678 | . 2 ⊢ ∃𝑥((𝜒 ∧ 𝜑) → 𝜓) |
| 4 | bnj1101.2 | . . . . 5 ⊢ (𝜒 → 𝜑) | |
| 5 | 4 | pm4.71i 559 | . . . 4 ⊢ (𝜒 ↔ (𝜒 ∧ 𝜑)) |
| 6 | 5 | imbi1i 349 | . . 3 ⊢ ((𝜒 → 𝜓) ↔ ((𝜒 ∧ 𝜑) → 𝜓)) |
| 7 | 6 | exbii 1847 | . 2 ⊢ (∃𝑥(𝜒 → 𝜓) ↔ ∃𝑥((𝜒 ∧ 𝜑) → 𝜓)) |
| 8 | 3, 7 | mpbir 231 | 1 ⊢ ∃𝑥(𝜒 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: bnj1110 34937 bnj1128 34945 bnj1145 34948 |
| Copyright terms: Public domain | W3C validator |