Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1113 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1113.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
bnj1113 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐶 𝐸 = ∪ 𝑥 ∈ 𝐷 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1113.1 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
2 | 1 | iuneq1d 4968 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐶 𝐸 = ∪ 𝑥 ∈ 𝐷 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∪ ciun 4941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rex 3071 df-v 3443 df-in 3905 df-ss 3915 df-iun 4943 |
This theorem is referenced by: bnj106 33147 bnj222 33162 bnj540 33171 bnj553 33177 bnj611 33197 bnj966 33223 bnj1112 33262 |
Copyright terms: Public domain | W3C validator |