Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1113 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1113.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
bnj1113 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐶 𝐸 = ∪ 𝑥 ∈ 𝐷 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1113.1 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
2 | 1 | iuneq1d 4956 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐶 𝐸 = ∪ 𝑥 ∈ 𝐷 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∪ ciun 4929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-v 3432 df-in 3898 df-ss 3908 df-iun 4931 |
This theorem is referenced by: bnj106 32827 bnj222 32842 bnj540 32851 bnj553 32857 bnj611 32877 bnj966 32903 bnj1112 32942 |
Copyright terms: Public domain | W3C validator |