 Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1113 Structured version   Visualization version   GIF version

Theorem bnj1113 31373
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1113.1 (𝐴 = 𝐵𝐶 = 𝐷)
Assertion
Ref Expression
bnj1113 (𝐴 = 𝐵 𝑥𝐶 𝐸 = 𝑥𝐷 𝐸)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem bnj1113
StepHypRef Expression
1 bnj1113.1 . 2 (𝐴 = 𝐵𝐶 = 𝐷)
21iuneq1d 4735 1 (𝐴 = 𝐵 𝑥𝐶 𝐸 = 𝑥𝐷 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1653  ∪ ciun 4710 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2777 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-v 3387  df-in 3776  df-ss 3783  df-iun 4712 This theorem is referenced by:  bnj106  31455  bnj222  31470  bnj540  31479  bnj553  31485  bnj611  31505  bnj966  31531  bnj1112  31568
 Copyright terms: Public domain W3C validator