Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1113 Structured version   Visualization version   GIF version

Theorem bnj1113 33791
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1113.1 (𝐴 = 𝐵𝐶 = 𝐷)
Assertion
Ref Expression
bnj1113 (𝐴 = 𝐵 𝑥𝐶 𝐸 = 𝑥𝐷 𝐸)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem bnj1113
StepHypRef Expression
1 bnj1113.1 . 2 (𝐴 = 𝐵𝐶 = 𝐷)
21iuneq1d 5024 1 (𝐴 = 𝐵 𝑥𝐶 𝐸 = 𝑥𝐷 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   ciun 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-v 3476  df-in 3955  df-ss 3965  df-iun 4999
This theorem is referenced by:  bnj106  33874  bnj222  33889  bnj540  33898  bnj553  33904  bnj611  33924  bnj966  33950  bnj1112  33989
  Copyright terms: Public domain W3C validator