Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj101 Structured version   Visualization version   GIF version

Theorem bnj101 34699
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj101.1 𝑥𝜑
bnj101.2 (𝜑𝜓)
Assertion
Ref Expression
bnj101 𝑥𝜓

Proof of Theorem bnj101
StepHypRef Expression
1 bnj101.1 . 2 𝑥𝜑
2 bnj101.2 . 2 (𝜑𝜓)
31, 2eximii 1835 1 𝑥𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  bnj1023  34756  bnj1098  34759  bnj1101  34760  bnj1109  34762  bnj1468  34822  bnj907  34943  bnj1110  34958  bnj1118  34960  bnj1128  34966  bnj1145  34969  bnj1172  34977  bnj1174  34979  bnj1176  34981
  Copyright terms: Public domain W3C validator