Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj101 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj101.1 | ⊢ ∃𝑥𝜑 |
bnj101.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
bnj101 | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj101.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | bnj101.2 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | eximii 1840 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: bnj1023 32660 bnj1098 32663 bnj1101 32664 bnj1109 32666 bnj1468 32726 bnj907 32847 bnj1110 32862 bnj1118 32864 bnj1128 32870 bnj1145 32873 bnj1172 32881 bnj1174 32883 bnj1176 32885 |
Copyright terms: Public domain | W3C validator |