| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1235 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1235.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) |
| Ref | Expression |
|---|---|
| bnj1235 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1235.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) | |
| 2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | bnj770 34760 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w-bnj17 34683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-bnj17 34684 |
| This theorem is referenced by: bnj966 34941 bnj967 34942 bnj910 34945 bnj1006 34957 bnj1018g 34960 bnj1018 34961 bnj1110 34979 bnj1121 34982 bnj1311 35021 |
| Copyright terms: Public domain | W3C validator |