Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1121 Structured version   Visualization version   GIF version

Theorem bnj1121 34485
Description: Technical lemma for bnj69 34510. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1121.1 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
bnj1121.2 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
bnj1121.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1121.4 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
bnj1121.5 (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
bnj1121.6 ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑛 𝜂)
bnj1121.7 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj1121 ((𝜃𝜏𝜒𝜁) → 𝑧𝐵)

Proof of Theorem bnj1121
StepHypRef Expression
1 19.8a 2166 . . . . 5 (𝜒 → ∃𝑛𝜒)
21bnj707 34255 . . . 4 ((𝜃𝜏𝜒𝜁) → ∃𝑛𝜒)
3 bnj1121.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
4 bnj1121.7 . . . . 5 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
53, 4bnj1083 34478 . . . 4 (𝑓𝐾 ↔ ∃𝑛𝜒)
62, 5sylibr 233 . . 3 ((𝜃𝜏𝜒𝜁) → 𝑓𝐾)
7 bnj1121.4 . . . . . 6 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
87simplbi 497 . . . . 5 (𝜁𝑖𝑛)
98bnj708 34256 . . . 4 ((𝜃𝜏𝜒𝜁) → 𝑖𝑛)
103bnj1235 34304 . . . . . 6 (𝜒𝑓 Fn 𝑛)
1110bnj707 34255 . . . . 5 ((𝜃𝜏𝜒𝜁) → 𝑓 Fn 𝑛)
1211fndmd 6644 . . . 4 ((𝜃𝜏𝜒𝜁) → dom 𝑓 = 𝑛)
139, 12eleqtrrd 2828 . . 3 ((𝜃𝜏𝜒𝜁) → 𝑖 ∈ dom 𝑓)
14 bnj1121.6 . . . . 5 ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑛 𝜂)
1514, 9bnj1294 34317 . . . 4 ((𝜃𝜏𝜒𝜁) → 𝜂)
16 bnj1121.5 . . . 4 (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
1715, 16sylib 217 . . 3 ((𝜃𝜏𝜒𝜁) → ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
186, 13, 17mp2and 696 . 2 ((𝜃𝜏𝜒𝜁) → (𝑓𝑖) ⊆ 𝐵)
197simprbi 496 . . 3 (𝜁𝑧 ∈ (𝑓𝑖))
2019bnj708 34256 . 2 ((𝜃𝜏𝜒𝜁) → 𝑧 ∈ (𝑓𝑖))
2118, 20sseldd 3975 1 ((𝜃𝜏𝜒𝜁) → 𝑧𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {cab 2701  wral 3053  wrex 3062  Vcvv 3466  wss 3940  dom cdm 5666   Fn wfn 6528  cfv 6533  w-bnj17 34186   predc-bnj14 34188   FrSe w-bnj15 34192   TrFow-bnj19 34196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-v 3468  df-in 3947  df-ss 3957  df-fn 6536  df-bnj17 34187
This theorem is referenced by:  bnj1030  34487
  Copyright terms: Public domain W3C validator