![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1121 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34021. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1121.1 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
bnj1121.2 | ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
bnj1121.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1121.4 | ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) |
bnj1121.5 | ⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
bnj1121.6 | ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 𝜂) |
bnj1121.7 | ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj1121 | ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2175 | . . . . 5 ⊢ (𝜒 → ∃𝑛𝜒) | |
2 | 1 | bnj707 33766 | . . . 4 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∃𝑛𝜒) |
3 | bnj1121.3 | . . . . 5 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj1121.7 | . . . . 5 ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
5 | 3, 4 | bnj1083 33989 | . . . 4 ⊢ (𝑓 ∈ 𝐾 ↔ ∃𝑛𝜒) |
6 | 2, 5 | sylibr 233 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑓 ∈ 𝐾) |
7 | bnj1121.4 | . . . . . 6 ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) | |
8 | 7 | simplbi 499 | . . . . 5 ⊢ (𝜁 → 𝑖 ∈ 𝑛) |
9 | 8 | bnj708 33767 | . . . 4 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑖 ∈ 𝑛) |
10 | 3 | bnj1235 33815 | . . . . . 6 ⊢ (𝜒 → 𝑓 Fn 𝑛) |
11 | 10 | bnj707 33766 | . . . . 5 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑓 Fn 𝑛) |
12 | 11 | fndmd 6655 | . . . 4 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → dom 𝑓 = 𝑛) |
13 | 9, 12 | eleqtrrd 2837 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑖 ∈ dom 𝑓) |
14 | bnj1121.6 | . . . . 5 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 𝜂) | |
15 | 14, 9 | bnj1294 33828 | . . . 4 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝜂) |
16 | bnj1121.5 | . . . 4 ⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | |
17 | 15, 16 | sylib 217 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
18 | 6, 13, 17 | mp2and 698 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → (𝑓‘𝑖) ⊆ 𝐵) |
19 | 7 | simprbi 498 | . . 3 ⊢ (𝜁 → 𝑧 ∈ (𝑓‘𝑖)) |
20 | 19 | bnj708 33767 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ (𝑓‘𝑖)) |
21 | 18, 20 | sseldd 3984 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ⊆ wss 3949 dom cdm 5677 Fn wfn 6539 ‘cfv 6544 ∧ w-bnj17 33697 predc-bnj14 33699 FrSe w-bnj15 33703 TrFow-bnj19 33707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-in 3956 df-ss 3966 df-fn 6547 df-bnj17 33698 |
This theorem is referenced by: bnj1030 33998 |
Copyright terms: Public domain | W3C validator |