Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj770 Structured version   Visualization version   GIF version

Theorem bnj770 34739
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj770.1 (𝜂 ↔ (𝜑𝜓𝜒𝜃))
bnj770.2 (𝜓𝜏)
Assertion
Ref Expression
bnj770 (𝜂𝜏)

Proof of Theorem bnj770
StepHypRef Expression
1 bnj770.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒𝜃))
2 bnj770.2 . . 3 (𝜓𝜏)
32bnj706 34730 . 2 ((𝜑𝜓𝜒𝜃) → 𝜏)
41, 3sylbi 217 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w-bnj17 34662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-bnj17 34663
This theorem is referenced by:  bnj1235  34780  bnj605  34883  bnj607  34892  bnj983  34927  bnj1110  34958  bnj1145  34969  bnj1256  34991  bnj1296  34997  bnj1450  35026
  Copyright terms: Public domain W3C validator