Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj770 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj770.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) |
bnj770.2 | ⊢ (𝜓 → 𝜏) |
Ref | Expression |
---|---|
bnj770 | ⊢ (𝜂 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj770.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | bnj770.2 | . . 3 ⊢ (𝜓 → 𝜏) | |
3 | 2 | bnj706 32734 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝜂 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w-bnj17 32665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-bnj17 32666 |
This theorem is referenced by: bnj1235 32784 bnj605 32887 bnj607 32896 bnj983 32931 bnj1110 32962 bnj1145 32973 bnj1256 32995 bnj1296 33001 bnj1450 33030 |
Copyright terms: Public domain | W3C validator |