Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj770 Structured version   Visualization version   GIF version

Theorem bnj770 32108
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj770.1 (𝜂 ↔ (𝜑𝜓𝜒𝜃))
bnj770.2 (𝜓𝜏)
Assertion
Ref Expression
bnj770 (𝜂𝜏)

Proof of Theorem bnj770
StepHypRef Expression
1 bnj770.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒𝜃))
2 bnj770.2 . . 3 (𝜓𝜏)
32bnj706 32099 . 2 ((𝜑𝜓𝜒𝜃) → 𝜏)
41, 3sylbi 220 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w-bnj17 32030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-bnj17 32031
This theorem is referenced by:  bnj1235  32150  bnj605  32253  bnj607  32262  bnj983  32297  bnj1110  32328  bnj1145  32339  bnj1256  32361  bnj1296  32367  bnj1450  32396
  Copyright terms: Public domain W3C validator