| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj910 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35007. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj910.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj910.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj910.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj910.4 | ⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) |
| bnj910.5 | ⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) |
| bnj910.6 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
| bnj910.7 | ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) |
| bnj910.8 | ⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) |
| bnj910.9 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
| bnj910.10 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj910.11 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| bnj910.12 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
| bnj910.13 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| bnj910.14 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj910.15 | ⊢ (𝜎 ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛)) |
| Ref | Expression |
|---|---|
| bnj910 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜒″) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj910.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 2 | bnj910.10 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 3 | 1, 2 | bnj970 34944 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 ∈ 𝐷) |
| 4 | bnj910.1 | . . . . 5 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 5 | bnj910.2 | . . . . 5 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 6 | bnj910.12 | . . . . 5 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
| 7 | bnj910.14 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 8 | bnj910.15 | . . . . 5 ⊢ (𝜎 ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛)) | |
| 9 | 4, 5, 1, 2, 6, 7, 8 | bnj969 34943 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐶 ∈ V) |
| 10 | simpr3 1197 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛) | |
| 11 | 1 | bnj1235 34801 | . . . . . 6 ⊢ (𝜒 → 𝑓 Fn 𝑛) |
| 12 | 11 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑓 Fn 𝑛) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑓 Fn 𝑛) |
| 14 | bnj910.13 | . . . . . 6 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 15 | 14 | bnj941 34769 | . . . . 5 ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) |
| 16 | 15 | 3impib 1116 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) |
| 17 | 9, 10, 13, 16 | syl3anc 1373 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝) |
| 18 | bnj910.4 | . . . 4 ⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) | |
| 19 | bnj910.7 | . . . 4 ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) | |
| 20 | 4, 5, 1, 18, 19, 2, 6, 14, 7, 8 | bnj944 34935 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜑″) |
| 21 | bnj910.5 | . . . 4 ⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) | |
| 22 | bnj910.8 | . . . 4 ⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) | |
| 23 | 5, 1, 2, 6, 14, 9 | bnj967 34942 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 24 | 1, 2, 6, 14, 9, 17 | bnj966 34941 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 25 | 5, 1, 21, 22, 6, 14, 23, 24 | bnj964 34940 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜓″) |
| 26 | 3, 17, 20, 25 | bnj951 34772 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → (𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″)) |
| 27 | bnj910.6 | . . . 4 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
| 28 | vex 3454 | . . . 4 ⊢ 𝑝 ∈ V | |
| 29 | 1, 18, 21, 27, 28 | bnj919 34764 | . . 3 ⊢ (𝜒′ ↔ (𝑝 ∈ 𝐷 ∧ 𝑓 Fn 𝑝 ∧ 𝜑′ ∧ 𝜓′)) |
| 30 | bnj910.9 | . . 3 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
| 31 | 14 | bnj918 34763 | . . 3 ⊢ 𝐺 ∈ V |
| 32 | 29, 19, 22, 30, 31 | bnj976 34774 | . 2 ⊢ (𝜒″ ↔ (𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″)) |
| 33 | 26, 32 | sylibr 234 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜒″) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 Vcvv 3450 [wsbc 3756 ∖ cdif 3914 ∪ cun 3915 ∅c0 4299 {csn 4592 〈cop 4598 ∪ ciun 4958 suc csuc 6337 Fn wfn 6509 ‘cfv 6514 ωcom 7845 ∧ w-bnj17 34683 predc-bnj14 34685 FrSe w-bnj15 34689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-reg 9552 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-om 7846 df-bnj17 34684 df-bnj14 34686 df-bnj13 34688 df-bnj15 34690 |
| This theorem is referenced by: bnj998 34954 |
| Copyright terms: Public domain | W3C validator |