Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj910 Structured version   Visualization version   GIF version

Theorem bnj910 32220
Description: Technical lemma for bnj69 32282. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj910.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj910.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj910.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj910.4 (𝜑′[𝑝 / 𝑛]𝜑)
bnj910.5 (𝜓′[𝑝 / 𝑛]𝜓)
bnj910.6 (𝜒′[𝑝 / 𝑛]𝜒)
bnj910.7 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj910.8 (𝜓″[𝐺 / 𝑓]𝜓′)
bnj910.9 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj910.10 𝐷 = (ω ∖ {∅})
bnj910.11 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj910.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj910.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj910.14 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
bnj910.15 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
Assertion
Ref Expression
bnj910 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜒″)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑖,𝐺   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛   𝑓,𝑝,𝑖,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑝)   𝐵(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑚,𝑝)   𝑅(𝑝)   𝐺(𝑦,𝑓,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑚,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj910
StepHypRef Expression
1 bnj910.3 . . . 4 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj910.10 . . . 4 𝐷 = (ω ∖ {∅})
31, 2bnj970 32219 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)
4 bnj910.1 . . . . 5 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
5 bnj910.2 . . . . 5 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
6 bnj910.12 . . . . 5 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
7 bnj910.14 . . . . 5 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
8 bnj910.15 . . . . 5 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
94, 5, 1, 2, 6, 7, 8bnj969 32218 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
10 simpr3 1192 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛)
111bnj1235 32076 . . . . . 6 (𝜒𝑓 Fn 𝑛)
12113ad2ant1 1129 . . . . 5 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑓 Fn 𝑛)
1312adantl 484 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑓 Fn 𝑛)
14 bnj910.13 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
1514bnj941 32044 . . . . 5 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
16153impib 1112 . . . 4 ((𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)
179, 10, 13, 16syl3anc 1367 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝)
18 bnj910.4 . . . 4 (𝜑′[𝑝 / 𝑛]𝜑)
19 bnj910.7 . . . 4 (𝜑″[𝐺 / 𝑓]𝜑′)
204, 5, 1, 18, 19, 2, 6, 14, 7, 8bnj944 32210 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜑″)
21 bnj910.5 . . . 4 (𝜓′[𝑝 / 𝑛]𝜓)
22 bnj910.8 . . . 4 (𝜓″[𝐺 / 𝑓]𝜓′)
235, 1, 2, 6, 14, 9bnj967 32217 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
241, 2, 6, 14, 9, 17bnj966 32216 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
255, 1, 21, 22, 6, 14, 23, 24bnj964 32215 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜓″)
263, 17, 20, 25bnj951 32047 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))
27 bnj910.6 . . . 4 (𝜒′[𝑝 / 𝑛]𝜒)
28 vex 3497 . . . 4 𝑝 ∈ V
291, 18, 21, 27, 28bnj919 32038 . . 3 (𝜒′ ↔ (𝑝𝐷𝑓 Fn 𝑝𝜑′𝜓′))
30 bnj910.9 . . 3 (𝜒″[𝐺 / 𝑓]𝜒′)
3114bnj918 32037 . . 3 𝐺 ∈ V
3229, 19, 22, 30, 31bnj976 32049 . 2 (𝜒″ ↔ (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))
3326, 32sylibr 236 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜒″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  [wsbc 3771  cdif 3932  cun 3933  c0 4290  {csn 4566  cop 4572   ciun 4918  suc csuc 6192   Fn wfn 6349  cfv 6354  ωcom 7579  w-bnj17 31956   predc-bnj14 31958   FrSe w-bnj15 31962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pr 5329  ax-un 7460  ax-reg 9055
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7580  df-bnj17 31957  df-bnj14 31959  df-bnj13 31961  df-bnj15 31963
This theorem is referenced by:  bnj998  32229
  Copyright terms: Public domain W3C validator