Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqcomd | Structured version Visualization version GIF version |
Description: Deduction from commutative law for class equality. (Contributed by NM, 15-Aug-1994.) Allow shortening of eqcom 2745. (Revised by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
eqcomd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eqcomd | ⊢ (𝜑 → 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | eqcomd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eqeq1d 2740 | . 2 ⊢ (𝜑 → (𝐴 = 𝐴 ↔ 𝐵 = 𝐴)) |
4 | 1, 3 | mpbii 232 | 1 ⊢ (𝜑 → 𝐵 = 𝐴) |
Copyright terms: Public domain | W3C validator |