Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj133 Structured version   Visualization version   GIF version

Theorem bnj133 32706
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj133.1 (𝜑 ↔ ∃𝑥𝜓)
bnj133.2 (𝜒𝜓)
Assertion
Ref Expression
bnj133 (𝜑 ↔ ∃𝑥𝜒)

Proof of Theorem bnj133
StepHypRef Expression
1 bnj133.1 . 2 (𝜑 ↔ ∃𝑥𝜓)
2 bnj133.2 . . 3 (𝜒𝜓)
32exbii 1850 . 2 (∃𝑥𝜒 ↔ ∃𝑥𝜓)
41, 3bitr4i 277 1 (𝜑 ↔ ∃𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  bnj150  32856  bnj983  32931  bnj984  32932  bnj985v  32933  bnj985  32934  bnj1090  32959  bnj1514  33043
  Copyright terms: Public domain W3C validator