Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj133 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj133.1 | ⊢ (𝜑 ↔ ∃𝑥𝜓) |
bnj133.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
bnj133 | ⊢ (𝜑 ↔ ∃𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj133.1 | . 2 ⊢ (𝜑 ↔ ∃𝑥𝜓) | |
2 | bnj133.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | exbii 1850 | . 2 ⊢ (∃𝑥𝜒 ↔ ∃𝑥𝜓) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (𝜑 ↔ ∃𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: bnj150 32856 bnj983 32931 bnj984 32932 bnj985v 32933 bnj985 32934 bnj1090 32959 bnj1514 33043 |
Copyright terms: Public domain | W3C validator |