| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj133 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj133.1 | ⊢ (𝜑 ↔ ∃𝑥𝜓) |
| bnj133.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bnj133 | ⊢ (𝜑 ↔ ∃𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj133.1 | . 2 ⊢ (𝜑 ↔ ∃𝑥𝜓) | |
| 2 | bnj133.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | exbii 1847 | . 2 ⊢ (∃𝑥𝜒 ↔ ∃𝑥𝜓) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝜑 ↔ ∃𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: bnj150 34891 bnj983 34966 bnj984 34967 bnj985v 34968 bnj985 34969 bnj1090 34994 bnj1514 35078 |
| Copyright terms: Public domain | W3C validator |