Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1514 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1500 32948. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1514.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1514.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1514.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
Ref | Expression |
---|---|
bnj1514 | ⊢ (𝑓 ∈ 𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1514.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
2 | 1 | bnj1436 32719 | . . . 4 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
3 | df-rex 3069 | . . . . 5 ⊢ (∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ ∃𝑑(𝑑 ∈ 𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) | |
4 | 3anass 1093 | . . . . 5 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (𝑑 ∈ 𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) | |
5 | 3, 4 | bnj133 32606 | . . . 4 ⊢ (∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ ∃𝑑(𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
6 | 2, 5 | sylib 217 | . . 3 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑(𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
7 | simp3 1136 | . . . 4 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) → ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) | |
8 | fndm 6520 | . . . . . 6 ⊢ (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑) | |
9 | 8 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) → dom 𝑓 = 𝑑) |
10 | 9 | raleqdv 3339 | . . . 4 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) → (∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌) ↔ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
11 | 7, 10 | mpbird 256 | . . 3 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) → ∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌)) |
12 | 6, 11 | bnj593 32625 | . 2 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌)) |
13 | 12 | bnj937 32651 | 1 ⊢ (𝑓 ∈ 𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 〈cop 4564 dom cdm 5580 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 predc-bnj14 32567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-fn 6421 |
This theorem is referenced by: bnj1501 32947 |
Copyright terms: Public domain | W3C validator |