Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1514 Structured version   Visualization version   GIF version

Theorem bnj1514 32443
 Description: Technical lemma for bnj1500 32448. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1514.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1514.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1514.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj1514 (𝑓𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
Distinct variable groups:   𝑥,𝐴   𝐺,𝑑   𝑌,𝑑   𝑓,𝑑,𝑥
Allowed substitution hints:   𝐴(𝑓,𝑑)   𝐵(𝑥,𝑓,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑥,𝑓,𝑑)   𝐺(𝑥,𝑓)   𝑌(𝑥,𝑓)

Proof of Theorem bnj1514
StepHypRef Expression
1 bnj1514.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
21bnj1436 32219 . . . 4 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
3 df-rex 3115 . . . . 5 (∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ ∃𝑑(𝑑𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
4 3anass 1092 . . . . 5 ((𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝑑𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
53, 4bnj133 32105 . . . 4 (∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ ∃𝑑(𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
62, 5sylib 221 . . 3 (𝑓𝐶 → ∃𝑑(𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
7 simp3 1135 . . . 4 ((𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) → ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))
8 fndm 6429 . . . . . 6 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
983ad2ant2 1131 . . . . 5 ((𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) → dom 𝑓 = 𝑑)
109raleqdv 3367 . . . 4 ((𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) → (∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌) ↔ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
117, 10mpbird 260 . . 3 ((𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
126, 11bnj593 32124 . 2 (𝑓𝐶 → ∃𝑑𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
1312bnj937 32151 1 (𝑓𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2112  {cab 2779  ∀wral 3109  ∃wrex 3110   ⊆ wss 3884  ⟨cop 4534  dom cdm 5523   ↾ cres 5525   Fn wfn 6323  ‘cfv 6328   predc-bnj14 32066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-ral 3114  df-rex 3115  df-fn 6331 This theorem is referenced by:  bnj1501  32447
 Copyright terms: Public domain W3C validator