![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj985 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 31595. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj985.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj985.6 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
bnj985.9 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
bnj985.11 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj985.13 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj985 | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj985.13 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | 1 | bnj918 31353 | . . 3 ⊢ 𝐺 ∈ V |
3 | bnj985.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj985.11 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
5 | 3, 4 | bnj984 31539 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒)) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒) |
7 | sbcex2 3684 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑝𝜒′ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) | |
8 | nfv 2010 | . . . . . . 7 ⊢ Ⅎ𝑝𝜒 | |
9 | 8 | sb8e 2543 | . . . . . 6 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
10 | sbsbc 3637 | . . . . . . 7 ⊢ ([𝑝 / 𝑛]𝜒 ↔ [𝑝 / 𝑛]𝜒) | |
11 | 10 | exbii 1944 | . . . . . 6 ⊢ (∃𝑝[𝑝 / 𝑛]𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
12 | 9, 11 | bitri 267 | . . . . 5 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
13 | bnj985.6 | . . . . 5 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
14 | 12, 13 | bnj133 31313 | . . . 4 ⊢ (∃𝑛𝜒 ↔ ∃𝑝𝜒′) |
15 | 14 | sbcbii 3689 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ [𝐺 / 𝑓]∃𝑝𝜒′) |
16 | bnj985.9 | . . . 4 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
17 | 16 | exbii 1944 | . . 3 ⊢ (∃𝑝𝜒″ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) |
18 | 7, 15, 17 | 3bitr4i 295 | . 2 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ ∃𝑝𝜒″) |
19 | 6, 18 | bitri 267 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ w3a 1108 = wceq 1653 ∃wex 1875 [wsb 2064 ∈ wcel 2157 {cab 2785 ∃wrex 3090 Vcvv 3385 [wsbc 3633 ∪ cun 3767 {csn 4368 〈cop 4374 Fn wfn 6096 ∧ w-bnj17 31272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-nul 4116 df-sn 4369 df-pr 4371 df-uni 4629 df-bnj17 31273 |
This theorem is referenced by: bnj1018 31549 |
Copyright terms: Public domain | W3C validator |