![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj985 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 35016. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). See bnj985v 34959 for a version with more disjoint variable conditions, not requiring ax-13 2376. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj985.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj985.6 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
bnj985.9 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
bnj985.11 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj985.13 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj985 | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj985.13 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | 1 | bnj918 34772 | . . 3 ⊢ 𝐺 ∈ V |
3 | bnj985.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj985.11 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
5 | 3, 4 | bnj984 34958 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒)) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒) |
7 | sbcex2 3857 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑝𝜒′ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) | |
8 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑝𝜒 | |
9 | 8 | sb8e 2522 | . . . . . 6 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
10 | sbsbc 3796 | . . . . . . 7 ⊢ ([𝑝 / 𝑛]𝜒 ↔ [𝑝 / 𝑛]𝜒) | |
11 | 10 | exbii 1846 | . . . . . 6 ⊢ (∃𝑝[𝑝 / 𝑛]𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
12 | 9, 11 | bitri 275 | . . . . 5 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
13 | bnj985.6 | . . . . 5 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
14 | 12, 13 | bnj133 34733 | . . . 4 ⊢ (∃𝑛𝜒 ↔ ∃𝑝𝜒′) |
15 | 14 | sbcbii 3853 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ [𝐺 / 𝑓]∃𝑝𝜒′) |
16 | bnj985.9 | . . . 4 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
17 | 16 | exbii 1846 | . . 3 ⊢ (∃𝑝𝜒″ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) |
18 | 7, 15, 17 | 3bitr4i 303 | . 2 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ ∃𝑝𝜒″) |
19 | 6, 18 | bitri 275 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1538 ∃wex 1777 [wsb 2063 ∈ wcel 2107 {cab 2713 ∃wrex 3069 Vcvv 3479 [wsbc 3792 ∪ cun 3962 {csn 4632 〈cop 4638 Fn wfn 6561 ∧ w-bnj17 34692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rex 3070 df-v 3481 df-sbc 3793 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-sn 4633 df-pr 4635 df-uni 4914 df-bnj17 34693 |
This theorem is referenced by: bnj1018g 34969 |
Copyright terms: Public domain | W3C validator |