| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj985 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 34958. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). See bnj985v 34901 for a version with more disjoint variable conditions, not requiring ax-13 2375. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj985.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj985.6 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
| bnj985.9 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
| bnj985.11 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| bnj985.13 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| Ref | Expression |
|---|---|
| bnj985 | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj985.13 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 2 | 1 | bnj918 34714 | . . 3 ⊢ 𝐺 ∈ V |
| 3 | bnj985.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 4 | bnj985.11 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
| 5 | 3, 4 | bnj984 34900 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒)) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒) |
| 7 | sbcex2 3831 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑝𝜒′ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) | |
| 8 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑝𝜒 | |
| 9 | 8 | sb8e 2521 | . . . . . 6 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
| 10 | sbsbc 3774 | . . . . . . 7 ⊢ ([𝑝 / 𝑛]𝜒 ↔ [𝑝 / 𝑛]𝜒) | |
| 11 | 10 | exbii 1847 | . . . . . 6 ⊢ (∃𝑝[𝑝 / 𝑛]𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
| 12 | 9, 11 | bitri 275 | . . . . 5 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
| 13 | bnj985.6 | . . . . 5 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
| 14 | 12, 13 | bnj133 34675 | . . . 4 ⊢ (∃𝑛𝜒 ↔ ∃𝑝𝜒′) |
| 15 | 14 | sbcbii 3827 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ [𝐺 / 𝑓]∃𝑝𝜒′) |
| 16 | bnj985.9 | . . . 4 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
| 17 | 16 | exbii 1847 | . . 3 ⊢ (∃𝑝𝜒″ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) |
| 18 | 7, 15, 17 | 3bitr4i 303 | . 2 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ ∃𝑝𝜒″) |
| 19 | 6, 18 | bitri 275 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∃wex 1778 [wsb 2063 ∈ wcel 2107 {cab 2712 ∃wrex 3059 Vcvv 3463 [wsbc 3770 ∪ cun 3929 {csn 4606 〈cop 4612 Fn wfn 6535 ∧ w-bnj17 34634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4888 df-bnj17 34635 |
| This theorem is referenced by: bnj1018g 34911 |
| Copyright terms: Public domain | W3C validator |