| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj985v | Structured version Visualization version GIF version | ||
| Description: Version of bnj985 34966 with an additional disjoint variable condition, not requiring ax-13 2372. (Contributed by GG, 27-Mar-2024.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj985v.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj985v.6 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
| bnj985v.9 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
| bnj985v.11 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| bnj985v.13 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| Ref | Expression |
|---|---|
| bnj985v | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj985v.13 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 2 | 1 | bnj918 34778 | . . 3 ⊢ 𝐺 ∈ V |
| 3 | bnj985v.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 4 | bnj985v.11 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
| 5 | 3, 4 | bnj984 34964 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒)) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒) |
| 7 | sbcex2 3797 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑝𝜒′ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) | |
| 8 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑝𝜒 | |
| 9 | 8 | sb8ef 2355 | . . . . . 6 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
| 10 | sbsbc 3740 | . . . . . . 7 ⊢ ([𝑝 / 𝑛]𝜒 ↔ [𝑝 / 𝑛]𝜒) | |
| 11 | 10 | exbii 1849 | . . . . . 6 ⊢ (∃𝑝[𝑝 / 𝑛]𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
| 12 | 9, 11 | bitri 275 | . . . . 5 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
| 13 | bnj985v.6 | . . . . 5 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
| 14 | 12, 13 | bnj133 34739 | . . . 4 ⊢ (∃𝑛𝜒 ↔ ∃𝑝𝜒′) |
| 15 | 14 | sbcbii 3793 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ [𝐺 / 𝑓]∃𝑝𝜒′) |
| 16 | bnj985v.9 | . . . 4 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
| 17 | 16 | exbii 1849 | . . 3 ⊢ (∃𝑝𝜒″ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) |
| 18 | 7, 15, 17 | 3bitr4i 303 | . 2 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ ∃𝑝𝜒″) |
| 19 | 6, 18 | bitri 275 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∃wex 1780 [wsb 2067 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 [wsbc 3736 ∪ cun 3895 {csn 4573 〈cop 4579 Fn wfn 6476 ∧ w-bnj17 34698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-uni 4857 df-bnj17 34699 |
| This theorem is referenced by: bnj1018 34976 |
| Copyright terms: Public domain | W3C validator |