Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj985v Structured version   Visualization version   GIF version

Theorem bnj985v 32833
Description: Version of bnj985 32834 with an additional disjoint variable condition, not requiring ax-13 2372. (Contributed by Gino Giotto, 27-Mar-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj985v.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj985v.6 (𝜒′[𝑝 / 𝑛]𝜒)
bnj985v.9 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj985v.11 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj985v.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj985v (𝐺𝐵 ↔ ∃𝑝𝜒″)
Distinct variable groups:   𝐺,𝑝   𝜒,𝑝   𝑓,𝑝   𝑛,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑛,𝑝)   𝜓(𝑓,𝑛,𝑝)   𝜒(𝑓,𝑛)   𝐵(𝑓,𝑛,𝑝)   𝐶(𝑓,𝑛,𝑝)   𝐷(𝑓,𝑛,𝑝)   𝐺(𝑓,𝑛)   𝜒′(𝑓,𝑛,𝑝)   𝜒″(𝑓,𝑛,𝑝)

Proof of Theorem bnj985v
StepHypRef Expression
1 bnj985v.13 . . . 4 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
21bnj918 32646 . . 3 𝐺 ∈ V
3 bnj985v.3 . . . 4 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
4 bnj985v.11 . . . 4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
53, 4bnj984 32832 . . 3 (𝐺 ∈ V → (𝐺𝐵[𝐺 / 𝑓]𝑛𝜒))
62, 5ax-mp 5 . 2 (𝐺𝐵[𝐺 / 𝑓]𝑛𝜒)
7 sbcex2 3777 . . 3 ([𝐺 / 𝑓]𝑝𝜒′ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′)
8 nfv 1918 . . . . . . 7 𝑝𝜒
98sb8ev 2353 . . . . . 6 (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒)
10 sbsbc 3715 . . . . . . 7 ([𝑝 / 𝑛]𝜒[𝑝 / 𝑛]𝜒)
1110exbii 1851 . . . . . 6 (∃𝑝[𝑝 / 𝑛]𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒)
129, 11bitri 274 . . . . 5 (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒)
13 bnj985v.6 . . . . 5 (𝜒′[𝑝 / 𝑛]𝜒)
1412, 13bnj133 32606 . . . 4 (∃𝑛𝜒 ↔ ∃𝑝𝜒′)
1514sbcbii 3772 . . 3 ([𝐺 / 𝑓]𝑛𝜒[𝐺 / 𝑓]𝑝𝜒′)
16 bnj985v.9 . . . 4 (𝜒″[𝐺 / 𝑓]𝜒′)
1716exbii 1851 . . 3 (∃𝑝𝜒″ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′)
187, 15, 173bitr4i 302 . 2 ([𝐺 / 𝑓]𝑛𝜒 ↔ ∃𝑝𝜒″)
196, 18bitri 274 1 (𝐺𝐵 ↔ ∃𝑝𝜒″)
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1085   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422  [wsbc 3711  cun 3881  {csn 4558  cop 4564   Fn wfn 6413  w-bnj17 32565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837  df-bnj17 32566
This theorem is referenced by:  bnj1018  32844
  Copyright terms: Public domain W3C validator