![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj985v | Structured version Visualization version GIF version |
Description: Version of bnj985 34716 with an additional disjoint variable condition, not requiring ax-13 2365. (Contributed by GG, 27-Mar-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj985v.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj985v.6 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
bnj985v.9 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
bnj985v.11 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj985v.13 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj985v | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj985v.13 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | 1 | bnj918 34528 | . . 3 ⊢ 𝐺 ∈ V |
3 | bnj985v.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj985v.11 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
5 | 3, 4 | bnj984 34714 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒)) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒) |
7 | sbcex2 3838 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑝𝜒′ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) | |
8 | nfv 1909 | . . . . . . 7 ⊢ Ⅎ𝑝𝜒 | |
9 | 8 | sb8ef 2345 | . . . . . 6 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
10 | sbsbc 3777 | . . . . . . 7 ⊢ ([𝑝 / 𝑛]𝜒 ↔ [𝑝 / 𝑛]𝜒) | |
11 | 10 | exbii 1842 | . . . . . 6 ⊢ (∃𝑝[𝑝 / 𝑛]𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
12 | 9, 11 | bitri 274 | . . . . 5 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
13 | bnj985v.6 | . . . . 5 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
14 | 12, 13 | bnj133 34489 | . . . 4 ⊢ (∃𝑛𝜒 ↔ ∃𝑝𝜒′) |
15 | 14 | sbcbii 3834 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ [𝐺 / 𝑓]∃𝑝𝜒′) |
16 | bnj985v.9 | . . . 4 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
17 | 16 | exbii 1842 | . . 3 ⊢ (∃𝑝𝜒″ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) |
18 | 7, 15, 17 | 3bitr4i 302 | . 2 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ ∃𝑝𝜒″) |
19 | 6, 18 | bitri 274 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∃wex 1773 [wsb 2059 ∈ wcel 2098 {cab 2702 ∃wrex 3059 Vcvv 3461 [wsbc 3773 ∪ cun 3942 {csn 4630 〈cop 4636 Fn wfn 6544 ∧ w-bnj17 34448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rex 3060 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-sn 4631 df-pr 4633 df-uni 4910 df-bnj17 34449 |
This theorem is referenced by: bnj1018 34726 |
Copyright terms: Public domain | W3C validator |