Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj985v | Structured version Visualization version GIF version |
Description: Version of bnj985 32934 with an additional disjoint variable condition, not requiring ax-13 2372. (Contributed by Gino Giotto, 27-Mar-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj985v.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj985v.6 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
bnj985v.9 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
bnj985v.11 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj985v.13 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj985v | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj985v.13 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | 1 | bnj918 32746 | . . 3 ⊢ 𝐺 ∈ V |
3 | bnj985v.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj985v.11 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
5 | 3, 4 | bnj984 32932 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒)) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒) |
7 | sbcex2 3781 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑝𝜒′ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) | |
8 | nfv 1917 | . . . . . . 7 ⊢ Ⅎ𝑝𝜒 | |
9 | 8 | sb8ef 2353 | . . . . . 6 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
10 | sbsbc 3720 | . . . . . . 7 ⊢ ([𝑝 / 𝑛]𝜒 ↔ [𝑝 / 𝑛]𝜒) | |
11 | 10 | exbii 1850 | . . . . . 6 ⊢ (∃𝑝[𝑝 / 𝑛]𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
12 | 9, 11 | bitri 274 | . . . . 5 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
13 | bnj985v.6 | . . . . 5 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
14 | 12, 13 | bnj133 32706 | . . . 4 ⊢ (∃𝑛𝜒 ↔ ∃𝑝𝜒′) |
15 | 14 | sbcbii 3776 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ [𝐺 / 𝑓]∃𝑝𝜒′) |
16 | bnj985v.9 | . . . 4 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
17 | 16 | exbii 1850 | . . 3 ⊢ (∃𝑝𝜒″ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) |
18 | 7, 15, 17 | 3bitr4i 303 | . 2 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ ∃𝑝𝜒″) |
19 | 6, 18 | bitri 274 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∃wex 1782 [wsb 2067 ∈ wcel 2106 {cab 2715 ∃wrex 3065 Vcvv 3432 [wsbc 3716 ∪ cun 3885 {csn 4561 〈cop 4567 Fn wfn 6428 ∧ w-bnj17 32665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-bnj17 32666 |
This theorem is referenced by: bnj1018 32944 |
Copyright terms: Public domain | W3C validator |