| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj985v | Structured version Visualization version GIF version | ||
| Description: Version of bnj985 34952 with an additional disjoint variable condition, not requiring ax-13 2371. (Contributed by GG, 27-Mar-2024.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj985v.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj985v.6 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
| bnj985v.9 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
| bnj985v.11 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| bnj985v.13 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| Ref | Expression |
|---|---|
| bnj985v | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj985v.13 | . . . 4 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 2 | 1 | bnj918 34764 | . . 3 ⊢ 𝐺 ∈ V |
| 3 | bnj985v.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 4 | bnj985v.11 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
| 5 | 3, 4 | bnj984 34950 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒)) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒) |
| 7 | sbcex2 3822 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑝𝜒′ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) | |
| 8 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑝𝜒 | |
| 9 | 8 | sb8ef 2354 | . . . . . 6 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
| 10 | sbsbc 3765 | . . . . . . 7 ⊢ ([𝑝 / 𝑛]𝜒 ↔ [𝑝 / 𝑛]𝜒) | |
| 11 | 10 | exbii 1848 | . . . . . 6 ⊢ (∃𝑝[𝑝 / 𝑛]𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
| 12 | 9, 11 | bitri 275 | . . . . 5 ⊢ (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒) |
| 13 | bnj985v.6 | . . . . 5 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
| 14 | 12, 13 | bnj133 34725 | . . . 4 ⊢ (∃𝑛𝜒 ↔ ∃𝑝𝜒′) |
| 15 | 14 | sbcbii 3818 | . . 3 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ [𝐺 / 𝑓]∃𝑝𝜒′) |
| 16 | bnj985v.9 | . . . 4 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
| 17 | 16 | exbii 1848 | . . 3 ⊢ (∃𝑝𝜒″ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′) |
| 18 | 7, 15, 17 | 3bitr4i 303 | . 2 ⊢ ([𝐺 / 𝑓]∃𝑛𝜒 ↔ ∃𝑝𝜒″) |
| 19 | 6, 18 | bitri 275 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∃wex 1779 [wsb 2065 ∈ wcel 2109 {cab 2708 ∃wrex 3055 Vcvv 3455 [wsbc 3761 ∪ cun 3920 {csn 4597 〈cop 4603 Fn wfn 6514 ∧ w-bnj17 34684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3056 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-sn 4598 df-pr 4600 df-uni 4880 df-bnj17 34685 |
| This theorem is referenced by: bnj1018 34962 |
| Copyright terms: Public domain | W3C validator |