| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj984 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35046. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj984.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj984.11 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| Ref | Expression |
|---|---|
| bnj984 | ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj984.11 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
| 2 | 1 | eleq2i 2827 | . . 3 ⊢ (𝐺 ∈ 𝐵 ↔ 𝐺 ∈ {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)}) |
| 3 | sbc8g 3778 | . . 3 ⊢ (𝐺 ∈ 𝐴 → ([𝐺 / 𝑓]∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ 𝐺 ∈ {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)})) | |
| 4 | 2, 3 | bitr4id 290 | . 2 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 5 | df-rex 3062 | . . . 4 ⊢ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
| 6 | bnj984.3 | . . . . 5 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 7 | bnj252 34739 | . . . . 5 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
| 8 | 6, 7 | bitri 275 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 9 | 5, 8 | bnj133 34763 | . . 3 ⊢ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃𝑛𝜒) |
| 10 | 9 | sbcbii 3827 | . 2 ⊢ ([𝐺 / 𝑓]∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ [𝐺 / 𝑓]∃𝑛𝜒) |
| 11 | 4, 10 | bitrdi 287 | 1 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ 𝐵 ↔ [𝐺 / 𝑓]∃𝑛𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∃wrex 3061 [wsbc 3770 Fn wfn 6531 ∧ w-bnj17 34722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-sbc 3771 df-bnj17 34723 |
| This theorem is referenced by: bnj985v 34989 bnj985 34990 |
| Copyright terms: Public domain | W3C validator |