Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj984 Structured version   Visualization version   GIF version

Theorem bnj984 34928
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj984.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj984.11 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj984 (𝐺𝐴 → (𝐺𝐵[𝐺 / 𝑓]𝑛𝜒))

Proof of Theorem bnj984
StepHypRef Expression
1 bnj984.11 . . . 4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
21eleq2i 2836 . . 3 (𝐺𝐵𝐺 ∈ {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)})
3 sbc8g 3812 . . 3 (𝐺𝐴 → ([𝐺 / 𝑓]𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓) ↔ 𝐺 ∈ {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}))
42, 3bitr4id 290 . 2 (𝐺𝐴 → (𝐺𝐵[𝐺 / 𝑓]𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)))
5 df-rex 3077 . . . 4 (∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓) ↔ ∃𝑛(𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓)))
6 bnj984.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
7 bnj252 34679 . . . . 5 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓)))
86, 7bitri 275 . . . 4 (𝜒 ↔ (𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓)))
95, 8bnj133 34703 . . 3 (∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓) ↔ ∃𝑛𝜒)
109sbcbii 3865 . 2 ([𝐺 / 𝑓]𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓) ↔ [𝐺 / 𝑓]𝑛𝜒)
114, 10bitrdi 287 1 (𝐺𝐴 → (𝐺𝐵[𝐺 / 𝑓]𝑛𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076  [wsbc 3804   Fn wfn 6568  w-bnj17 34662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-sbc 3805  df-bnj17 34663
This theorem is referenced by:  bnj985v  34929  bnj985  34930
  Copyright terms: Public domain W3C validator