Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj156 Structured version   Visualization version   GIF version

Theorem bnj156 34704
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj156.1 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
bnj156.2 (𝜁1[𝑔 / 𝑓]𝜁0)
bnj156.3 (𝜑1[𝑔 / 𝑓]𝜑′)
bnj156.4 (𝜓1[𝑔 / 𝑓]𝜓′)
Assertion
Ref Expression
bnj156 (𝜁1 ↔ (𝑔 Fn 1o𝜑1𝜓1))

Proof of Theorem bnj156
StepHypRef Expression
1 bnj156.2 . 2 (𝜁1[𝑔 / 𝑓]𝜁0)
2 bnj156.1 . . . 4 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
32sbcbii 3865 . . 3 ([𝑔 / 𝑓]𝜁0[𝑔 / 𝑓](𝑓 Fn 1o𝜑′𝜓′))
4 sbc3an 3874 . . . 4 ([𝑔 / 𝑓](𝑓 Fn 1o𝜑′𝜓′) ↔ ([𝑔 / 𝑓]𝑓 Fn 1o[𝑔 / 𝑓]𝜑′[𝑔 / 𝑓]𝜓′))
5 bnj62 34696 . . . . 5 ([𝑔 / 𝑓]𝑓 Fn 1o𝑔 Fn 1o)
6 bnj156.3 . . . . . 6 (𝜑1[𝑔 / 𝑓]𝜑′)
76bicomi 224 . . . . 5 ([𝑔 / 𝑓]𝜑′𝜑1)
8 bnj156.4 . . . . . 6 (𝜓1[𝑔 / 𝑓]𝜓′)
98bicomi 224 . . . . 5 ([𝑔 / 𝑓]𝜓′𝜓1)
105, 7, 93anbi123i 1155 . . . 4 (([𝑔 / 𝑓]𝑓 Fn 1o[𝑔 / 𝑓]𝜑′[𝑔 / 𝑓]𝜓′) ↔ (𝑔 Fn 1o𝜑1𝜓1))
114, 10bitri 275 . . 3 ([𝑔 / 𝑓](𝑓 Fn 1o𝜑′𝜓′) ↔ (𝑔 Fn 1o𝜑1𝜓1))
123, 11bitri 275 . 2 ([𝑔 / 𝑓]𝜁0 ↔ (𝑔 Fn 1o𝜑1𝜓1))
131, 12bitri 275 1 (𝜁1 ↔ (𝑔 Fn 1o𝜑1𝜓1))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087  [wsbc 3804   Fn wfn 6568  1oc1o 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-fun 6575  df-fn 6576
This theorem is referenced by:  bnj153  34856
  Copyright terms: Public domain W3C validator