Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj156 Structured version   Visualization version   GIF version

Theorem bnj156 32707
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj156.1 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
bnj156.2 (𝜁1[𝑔 / 𝑓]𝜁0)
bnj156.3 (𝜑1[𝑔 / 𝑓]𝜑′)
bnj156.4 (𝜓1[𝑔 / 𝑓]𝜓′)
Assertion
Ref Expression
bnj156 (𝜁1 ↔ (𝑔 Fn 1o𝜑1𝜓1))

Proof of Theorem bnj156
StepHypRef Expression
1 bnj156.2 . 2 (𝜁1[𝑔 / 𝑓]𝜁0)
2 bnj156.1 . . . 4 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
32sbcbii 3776 . . 3 ([𝑔 / 𝑓]𝜁0[𝑔 / 𝑓](𝑓 Fn 1o𝜑′𝜓′))
4 sbc3an 3786 . . . 4 ([𝑔 / 𝑓](𝑓 Fn 1o𝜑′𝜓′) ↔ ([𝑔 / 𝑓]𝑓 Fn 1o[𝑔 / 𝑓]𝜑′[𝑔 / 𝑓]𝜓′))
5 bnj62 32699 . . . . 5 ([𝑔 / 𝑓]𝑓 Fn 1o𝑔 Fn 1o)
6 bnj156.3 . . . . . 6 (𝜑1[𝑔 / 𝑓]𝜑′)
76bicomi 223 . . . . 5 ([𝑔 / 𝑓]𝜑′𝜑1)
8 bnj156.4 . . . . . 6 (𝜓1[𝑔 / 𝑓]𝜓′)
98bicomi 223 . . . . 5 ([𝑔 / 𝑓]𝜓′𝜓1)
105, 7, 93anbi123i 1154 . . . 4 (([𝑔 / 𝑓]𝑓 Fn 1o[𝑔 / 𝑓]𝜑′[𝑔 / 𝑓]𝜓′) ↔ (𝑔 Fn 1o𝜑1𝜓1))
114, 10bitri 274 . . 3 ([𝑔 / 𝑓](𝑓 Fn 1o𝜑′𝜓′) ↔ (𝑔 Fn 1o𝜑1𝜓1))
123, 11bitri 274 . 2 ([𝑔 / 𝑓]𝜁0 ↔ (𝑔 Fn 1o𝜑1𝜓1))
131, 12bitri 274 1 (𝜁1 ↔ (𝑔 Fn 1o𝜑1𝜓1))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1086  [wsbc 3716   Fn wfn 6428  1oc1o 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-fun 6435  df-fn 6436
This theorem is referenced by:  bnj153  32860
  Copyright terms: Public domain W3C validator