Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj156 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj156.1 | ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
bnj156.2 | ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) |
bnj156.3 | ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) |
bnj156.4 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
Ref | Expression |
---|---|
bnj156 | ⊢ (𝜁1 ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj156.2 | . 2 ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) | |
2 | bnj156.1 | . . . 4 ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) | |
3 | 2 | sbcbii 3772 | . . 3 ⊢ ([𝑔 / 𝑓]𝜁0 ↔ [𝑔 / 𝑓](𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
4 | sbc3an 3782 | . . . 4 ⊢ ([𝑔 / 𝑓](𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ↔ ([𝑔 / 𝑓]𝑓 Fn 1o ∧ [𝑔 / 𝑓]𝜑′ ∧ [𝑔 / 𝑓]𝜓′)) | |
5 | bnj62 32599 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝑓 Fn 1o ↔ 𝑔 Fn 1o) | |
6 | bnj156.3 | . . . . . 6 ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) | |
7 | 6 | bicomi 223 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝜑′ ↔ 𝜑1) |
8 | bnj156.4 | . . . . . 6 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
9 | 8 | bicomi 223 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝜓′ ↔ 𝜓1) |
10 | 5, 7, 9 | 3anbi123i 1153 | . . . 4 ⊢ (([𝑔 / 𝑓]𝑓 Fn 1o ∧ [𝑔 / 𝑓]𝜑′ ∧ [𝑔 / 𝑓]𝜓′) ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
11 | 4, 10 | bitri 274 | . . 3 ⊢ ([𝑔 / 𝑓](𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
12 | 3, 11 | bitri 274 | . 2 ⊢ ([𝑔 / 𝑓]𝜁0 ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
13 | 1, 12 | bitri 274 | 1 ⊢ (𝜁1 ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 [wsbc 3711 Fn wfn 6413 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 |
This theorem is referenced by: bnj153 32760 |
Copyright terms: Public domain | W3C validator |