Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj156 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj156.1 | ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
bnj156.2 | ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) |
bnj156.3 | ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) |
bnj156.4 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
Ref | Expression |
---|---|
bnj156 | ⊢ (𝜁1 ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj156.2 | . 2 ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) | |
2 | bnj156.1 | . . . 4 ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) | |
3 | 2 | sbcbii 3776 | . . 3 ⊢ ([𝑔 / 𝑓]𝜁0 ↔ [𝑔 / 𝑓](𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
4 | sbc3an 3786 | . . . 4 ⊢ ([𝑔 / 𝑓](𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ↔ ([𝑔 / 𝑓]𝑓 Fn 1o ∧ [𝑔 / 𝑓]𝜑′ ∧ [𝑔 / 𝑓]𝜓′)) | |
5 | bnj62 32699 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝑓 Fn 1o ↔ 𝑔 Fn 1o) | |
6 | bnj156.3 | . . . . . 6 ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) | |
7 | 6 | bicomi 223 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝜑′ ↔ 𝜑1) |
8 | bnj156.4 | . . . . . 6 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
9 | 8 | bicomi 223 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝜓′ ↔ 𝜓1) |
10 | 5, 7, 9 | 3anbi123i 1154 | . . . 4 ⊢ (([𝑔 / 𝑓]𝑓 Fn 1o ∧ [𝑔 / 𝑓]𝜑′ ∧ [𝑔 / 𝑓]𝜓′) ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
11 | 4, 10 | bitri 274 | . . 3 ⊢ ([𝑔 / 𝑓](𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
12 | 3, 11 | bitri 274 | . 2 ⊢ ([𝑔 / 𝑓]𝜁0 ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
13 | 1, 12 | bitri 274 | 1 ⊢ (𝜁1 ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 [wsbc 3716 Fn wfn 6428 1oc1o 8290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 |
This theorem is referenced by: bnj153 32860 |
Copyright terms: Public domain | W3C validator |